基于嫦娥探月微波数据的月球浅表层成分反演与结构分析研究
发布时间:2018-01-01 11:09
本文关键词:基于嫦娥探月微波数据的月球浅表层成分反演与结构分析研究 出处:《吉林大学》2014年博士论文 论文类型:学位论文
更多相关文章: 嫦娥卫星 微波辐射计 测月雷达 辐射传输模型 SVD模型 介电常数 氧化亚铁 氧化钛 月壤厚度 浅表层结构
【摘要】:目前可见光、红外等遥感技术已经应用于月球的探测中,但是这些遥感手段都受到了穿透深度的影响,只能反映月球表面的信息,无法对月壤层内的资源进行探索,无法揭示月球次表层结构。月球表面没有水的存在,月壤作为低损耗介质,电磁波可以对月球月壤层及次表层结构进行探测。因此,研究如何将地球中的微波遥感技术应用在月球探测中,是一项非常重要的工作。我国首次在嫦娥一号、嫦娥二号卫星上搭载了微波辐射计和在嫦娥三号卫星上搭载了测月雷达,对月球进行微波遥感探测。论文以电磁波散射与辐射为物理基础,微波遥感为探测手段,基于嫦娥探月微波辐射计和测月雷达数据,探测月球表面月壤特性和成分、浅层月壳分层结构,希望能对今后的探月工程提供理论依据。 研究中首先对嫦娥微波辐射计和测月雷达数据进行了处理。在对微波辐射计数据处理过程中,给出了嫦娥微波辐射计数据的几种时角校正方式,研究不同频率及不同纬度下的时角和亮温的相关关系,分别建立了不同频率通道下和不同纬度下的亮温日变化模型,并根据模型对亮温数据进行了时角校正,基于亮温日变化模型得到了特定时间的全月微波亮温分布。文章还利用克里金插值的方式,得到了不同时间不同频率下的全月亮温分布。结合DEM和CCD影像数据评价了微波亮温图,结果表明利用嫦娥二号微波辐射计数据基于时角校正制作全月微波亮温图,,很好地反映了月球地形以及月表反射率特征。对测月雷达数据的读取主要是通过测月雷达的相对位置信息确定了3条雷达测线,根据位置信息对雷达数据进行了坏道剔除和拼接,得到了2个通道(60MHz,500MHz)下的雷达反射波波形图。 在得到了全月微波亮温图后,研究中结合SVD模型对一个月球昼夜时刻12个不同时刻的37GHz和3GHz的微波亮温图进行分析,得到了3GHz的亮温数据为左场、37GHz的亮温数据为右场SVD的相关图,在中低纬度地区分析月球亮温变化异常和火山分布之间的关系;在高纬度地区,结合DEM数据提取月球永久阴影区,探测了月球水冰可能存在的位置。 基于辐射传输模型,结合处理后的全月亮温数据,通过解算相关参数,对3GHz下的全月介电常数实部和虚部进行初步反演。其中,月海地区的介电常数实部高于月陆地区,且月球极地区域介电常数实部偏低;而介电常数虚部则在月海区域和艾肯盆地较高。通过模拟月表介电常数实验对反演结果进行温度校正,得到22°C下全月介电常数。将反演结果和月壤真实样品的介电常数测量值进行比较评价。结果表明介电常数实部相对误差都低于11%;虚部相对误差偏大,但其差值最大仅为0.02。研究了介电常数虚部和FeO+TiO2的函数关系,结合辐射传输模型,对全月FeO+TiO2进行定量反演。在月海海域和艾肯盆地的FeO+TiO2含量较高,约为20%-30%。然而FeO+TiO2含量在高原地区相对较低。将伽玛射线数据反演结果,克莱门汀反演结果,CE-2的微波辐射计数据反演结果与实际月球土壤的实验室数据进行比较,发现CE-2的微波辐射计数据的反演结果在所有结果中与月壤真实样品的测量结果相关系数最高。 在利用测月雷达数据对月球主动微波遥感中,为了更好的分析测月雷达的探测结果,对测月雷达进行了数值模拟和地表模拟实验。数字模拟中,利用GPRMax模拟了测月雷达对月球不同地质结构的探测结果,分析了月球不同地质结构下的雷达反射波波形特征,其中包括月球表层结构分层模拟,月壤内水冰分布模拟和月岩层的下界面模拟。在地表模拟实验中,实验选择了和月球地质构造相对接近的内蒙古锡林浩特地区的鸽子山作为月球试验场,进行了野外实验,主要利用探地雷达模拟60MHz和500MHz测月雷达对月表浅层结构的探测,通过探地雷达数据对该地的火山岩地质特征进行了相关分析研究。在地表模拟实验除了野外实验外,也包括了室内月球模拟探测实验,通过实验室内设计的一条短剖面,主要针对500MHz测月雷达的探测深度对测月雷达进行了相关的模拟探测。 最后,对测月雷达的数据进行了相关的雷达数据处理,主要包括数据滤波,数据拼接,反褶积和扩散补偿,将处理结果结合GPRMAX、地表模拟探测结果,对测月雷达探测数据进行了相关分析,得到登月点的月壤厚度和月表浅层结构。
[Abstract]:At present, visible light, infrared remote sensing technology has been applied to lunar exploration, but these remote sensing techniques are affected by the depth of penetration, can only reflect the information about the surface of the moon, the lunar regolith layer to resources in the exploration of lunar subsurface structure cannot be revealed. The moon without the presence of water, soil as low lossy medium, electromagnetic wave can be detected on the lunar regolith layer and subsurface structure. Therefore, to study how the earth in the microwave remote sensing technology application in lunar exploration, is a very important work in our country. For the first time in Chang E 1, Chang'e two satellite microwave radiometer and in Chang'e three satellite measurement month radar, microwave remote sensing of lunar exploration. Based on the electromagnetic scattering and radiation physics based microwave remote sensing for detecting means, the goddess of the moon exploration microwave radiometer and based on Ce Yuelei It is hoped to provide a theoretical basis for the future lunar exploration project by detecting the characteristics and components of lunar loam and the stratified structure of the shallow lunar crust.
Of Chang E microwave radiometer and radar data were measured monthly. In the microwave radiometer data processing, gives several meter data e microwave radiation angle correction method, the correlation of different frequency and different latitudes of the angle and brightness temperature, different frequencies are established brightness temperature diurnal variation model and different latitudes, and according to the model of the brightness temperature data of angle correction, brightness temperature change model has been a full month microwave brightness temperature distribution based on a specific time. Using the Kriging interpolation method, the full moon temperature distribution at different time under different frequency the combination of DEM and CCD image data. The evaluation results show that the microwave brightness temperature, Chang'e two microwave radiation angle correction making microwave brightness temperature data based on the month, well reflect the moon and lunar terrain To read the measured reflectance characteristics. April radar data is mainly of 3 radar measuring line is determined by the relative position information of the measured monthly radar, according to the position information of the defects elimination and mosaic of radar data, the 2 channels (60MHz, 500MHz) under the radar echo waveform.
In the whole month microwave brightness temperature map, in the research of SVD model combined with microwave on a lunar day and night time 12 different moments of 37GHz and 3GHz on temperature were analyzed by 3GHz brightness temperature data for the left field, 37GHz brightness temperature data for the right field SVD diagram, analysis of the relationship between the moon brightness temperature changes between the anomaly and the volcano distribution in the low latitude region; at high latitudes, the moon extracted the permanently shadowed regions based on the DEM data, the detection of water ice on the moon may exist.
Based on radiative transfer model, combined with the full moon temperature after data processing, through the calculation of relevant parameters, initial inversion of 3GHz under the full moon, the dielectric constant of the real and imaginary parts. Among them, the sea area of the real part of the permittivity is higher than the monthly land area and the polar regions of the moon, the real part of permittivity is low; and the imaginary part of dielectric constant in the sea area and Aiken basin. Through high dielectric constant experiments on simulated lunar inversion results for temperature correction, 22 DEG C for the whole month of dielectric constant. The inversion results of lunar soil samples and real permittivity measurement values were evaluated. The results show that the dielectric constant. Department of the relative errors are less than 11%; the relative error is big imaginary part, but the biggest difference is only 0.02. of the function between the imaginary part of the dielectric constant and FeO+TiO2, combined with the radiative transfer model, quantitative inversion of the whole month. In the sea and AI Maria FeO+TiO2 Ken FeO+TiO2 content of basin is high, while the FeO+TiO2 content is about 20%-30%. in the plateau region is relatively low. The gamma ray data inversion results, Clementine inversion results were compared with laboratory data of the microwave radiation CE-2 data inversion results with the actual lunar soil, found that inversion of microwave radiation CE-2 meter data results in all results in the lunar soil and real samples of the highest correlation coefficient.
In the month of lunar data measured by radar active microwave remote sensing, in order to better analyze the measured monthly radar detection results of measured monthly radar are studied by numerical simulation and ground simulation experiment. Digital simulation, simulation of the moon on the moon radar detection results of different geological structure by GPRMax, analyzes the radar reflected wave the characteristics of different geological structure under the moon, including the lunar surface layered structure simulation, interface simulation and water ice distribution in lunar month rock simulation. On the surface of the simulation, experimental choice and lunar geological structure relatively close to the Inner Mongolia Xilinhaote area of Mount dove as the moon test field, field experiments were conducted, using ground penetrating radar simulation 60MHz and 500MHz measuring radar detection of shallow lunar month structure, through the analysis of GPR data on the volcano geological characteristics of rock are related In addition to field experiments, indoor lunar simulation and detection experiments are carried out in the surface simulation experiment. A short section designed in the laboratory is used to simulate the detection of lunar radar based on the detection depth of 500MHz lunar radar.
Finally, the measured monthly radar data were related to radar data processing, including data filtering, data registration, deconvolution and dispersion compensation, the results will be combined with the GPRMAX simulation of the surface of the detection results, measured monthly radar detection data were analyzed, obtained the thickness of lunar regolith and lunar landing sites of shallow structure.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:P184.5
【参考文献】
相关期刊论文 前5条
1 仝传雪;刘四新;王春辉;;时域有限差分法(FDTD)模拟探地雷达极化测量[J];吉林大学学报(地球科学版);2006年S1期
2 孟治国;陈圣波;刘财;杜晓娟;吕航;;非均匀月壤介质的被动微波辐射传输模拟[J];吉林大学学报(地球科学版);2008年06期
3 金亚秋,颜锋华,梁子长;微波辐射计对月面特征参数的遥感理论模拟[J];电波科学学报;2003年05期
4 法文哲;金亚秋;;光学观测与微波辐射模拟对月壤厚度的反演[J];电波科学学报;2006年03期
5 姜景山;王振占;李芸;;嫦娥1号卫星微波探月技术机理和应用研究[J];中国工程科学;2008年06期
相关博士学位论文 前1条
1 法文哲;月球微波遥感的理论建模与参数反演[D];复旦大学;2008年
本文编号:1364242
本文链接:https://www.wllwen.com/kejilunwen/tianwen/1364242.html