不同情绪状态下脑电信号特征的研究
发布时间:2018-03-12 20:08
本文选题:情绪 切入点:脑电信号 出处:《长春理工大学》2014年硕士论文 论文类型:学位论文
【摘要】:随着经济的发展,人们对生活水平的要求越来越高,无形中给自身带来很多压力,最终导致各种神经系统疾病的发生,例如:压力带来的内分泌失调、抑郁症、精神病等,影响着患者的情绪和行为表现,给他们的日常生活带来很大困扰。且有研究表明,自闭症儿童、多动症儿童、语言发育迟缓的儿童等也会时常表现出一定的情绪和行为问题。因此,情绪感知的研究对这些疾病的治疗有很大的帮助。 大脑作为人体最精巧复杂的器官之一,蕴含着丰富的生理信息和病理信息,因此,本文提出以脑电信号作为情绪感知研究的基础,通过研究各种情绪状态下脑电信号的特征差异,从而探索脑电信号随各种影响因素的变化规律。首先根据艾森克人格问卷挑选出人格类型为外向稳定型的人群作为受试者,以安静闭目状态下的脑电信号作为参照,用不同类型的纯音乐作为刺激源来诱发不同的情绪,同时采集脑电信号和眼电信号;然后对脑电信号进行去噪处理,并分离眼电伪迹;最后分别提取脑电信号的时域幅度直方图、频域功率谱密度、时频希尔伯特谱熵,定性、定量地分析脑电信号的变化。该研究不仅首次将性别、年龄、脑区、情绪这四种因素综合起来分析脑电信号及其四种基本节律随之变化的规律,并且首次将希尔伯特谱熵用于脑电信号的时频分析,将会作为一种新的分类指标用于情感识别。这些研究结果不仅揭示了不同情绪状态下大脑的作用机制,也为情绪感知、音乐治疗、神经科学的发展提供了理论依据。
[Abstract]:With the development of economy, people are demanding higher and higher standard of living, which can bring a lot of pressure to themselves, and eventually lead to a variety of nervous system diseases, such as: endocrine disorders, depression, psychosis, etc. Affect the emotional and behavioral performance of patients, and bring a lot of trouble to their daily life. And some studies have shown that autistic children, children with ADHD, Children with language retardation also often show certain emotional and behavioral problems. Therefore, the study of emotional perception is of great help to the treatment of these diseases. As one of the most delicate and complicated organs of human body, the brain contains abundant physiological and pathological information. By studying the characteristic differences of EEG signals in various emotional states, the changes of EEG signals with various influencing factors were explored. Firstly, according to the Eysenck Personality questionnaire, a group of people whose personality type was extroverted and stable was selected as subjects. The EEG signals in the state of quiet eyes are used as reference, and different types of pure music are used as stimulators to induce different emotions, and EEG and Eye-electric signals are collected at the same time, then the EEG signals are de-noised, and the artifacts of Eye-electric signals are separated. Finally, time-domain amplitude histogram, frequency-domain power spectral density, time-frequency Hilbert spectral entropy, qualitative and quantitative analysis of EEG changes were extracted respectively. The four factors of emotion are combined to analyze the changes of EEG and its four basic rhythms, and the Hilbert spectrum entropy is applied to the time-frequency analysis of EEG for the first time. These results not only reveal the mechanism of brain action in different emotional states, but also provide theoretical basis for the development of emotional perception, music therapy and neuroscience.
【学位授予单位】:长春理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.7
【参考文献】
相关期刊论文 前10条
1 孟丽艳;赵晓宇;姚力;;语言认知EEG非线性时间序列分析[J];北京师范大学学报(自然科学版);2005年06期
2 赵治栋,唐向宏,赵知劲,潘敏,陈裕泉;基于Hilbert-Huang Transform的心音信号谱分析[J];传感技术学报;2005年01期
3 李鹏海;万柏坤;徐秋晶;明东;;基于BP神经网络的想象动作电位模式识别研究[J];光电子.激光;2008年05期
4 刘心东,蒋大宗;混沌及其在生物医学工程中的应用[J];国外医学.生物医学工程分册;1993年02期
5 杨福生,洪波,唐庆玉;独立分量分析及其在生物医学工程中的应用[J];国外医学.生物医学工程分册;2000年03期
6 徐威,郑玉香;试谈音乐艺术教育对大学生心理健康的影响[J];教学研究;2005年03期
7 刘贤敏;刘昌;;中国古典音乐诱发情绪的生理活动研究[J];中国健康心理学杂志;2011年05期
8 吴东宇,董为伟;非线性动力学分析在脑电图中的应用[J];临床神经电生理学杂志;2003年01期
9 童珊,黄华,陈槐卿;非线性动力学在脑电分析中的应用[J];生理科学进展;2005年01期
10 陈志彬;陈娟;邱天爽;;基于经验模式分解的脑电棘波检测方法[J];生物医学工程学杂志;2007年05期
,本文编号:1603096
本文链接:https://www.wllwen.com/kejilunwen/wltx/1603096.html