高速光通信全光关键技术研究
本文选题:全光通信 切入点:时钟提取 出处:《北京交通大学》2014年博士论文
【摘要】:互联网流量增速迅猛、用户需求呈现急剧扩大化与多媒体化等态势均对光通信容量、光层功能提出了更高的要求,促使研究者不断寻求技术突破。本文围绕高速光通信中的全光关键技术,结合国家973项目“面向光路交换网络的光纤器件理论与关键技术研究”、国家863计划项目“160Gb/s一泵多纤光传输技术的研究”、国家自然科学基金重点项目“全光波长交换关键技术研究”等,针对光时分复用(OTDM)及解复用技术和传输链路管理、全光时钟提取技术、光延时技术、全光交换等方面进行了深入的理论、仿真及实验研究,取得的主要创新成果如下: 1、采用自制的色散渐减光纤和色散位移光纤进行皮秒脉冲压缩,并利用调相方式对受激布里渊散射进行了有效抑制,使入纤功率提高约10dB。利用研制的光时分复用器产生复用信号。采用对称的强色散图谱实现了100km传输链路的色散及色散斜率的精确补偿,同时抑制了信道内非线性损伤。提出了一种基于级联电吸收调制器和时钟提取模块的反馈环结构,同时实现了时钟增强、提取以及解复用。最终实现了160Gb/s OTDM信号100km两小时无误码传输及解复用。提出一种通过设计解复用窗口的匹配光滤波器来提高OTDM信号光谱利用率的方案,与原始40Gb/s OTDM信号相比,光谱利用率提高了约3倍。 2、深入研究了基于受激布里渊散射的全光时钟提取技术,建立了数值模型进行结构优化。分析了非等幅及非均匀光时分复用信号引入的时钟分量增强,提出了单路或群路时钟的提取方案,并实现了帧时钟提取。研究多路归零码信号的时钟提取,理论分析并实验验证了两路信号时钟提取的最大频率间隔,在此基础上提出一种布里渊增益带宽的测量方法。提出了基于半导体放大器和啁啾光纤光栅(CFBG)的改进型时钟分量增强结构,利用建立的数值模型进行结构分析及参数优化,实验研究时钟分量增强和提取结构对输入信号恶化程度的容忍度,实现了恶化非归零码(NRZ)信号以及两路NRZ信号的时钟增强并提取。 3、设计了一种基于微环谐振腔的集成波导光延时线,深入研究微环数目及微环谐振频率偏差对延时特性的影响,采用一种高效的热光调谐方案,在保证最大延时量的同时能有效提高延时带宽,完成微环光延时线的制备及封装测试,实现延时量从213ps到0ps的连续调节,同时可实现多支路延时量高精度连续可调。 4、提出了一种基于CFBG的改进型下路和续传结构,用于实现光层组播的光交叉连接功能,实验表明还可实现波长选择和色散补偿。实现了具有鲁棒性、资源可配置性的实时视频和数据业务的组播。引入了分布式网络管理方案,实现对基于光路交换的全光网络平台的具体功能和业务的支撑与管理。
[Abstract]:The rapid growth of Internet traffic, the rapid expansion of user demand and multimedia are all put forward higher requirements for optical communication capacity and optical layer functions. This paper focuses on the all-optical key technologies in high-speed optical communication. Combined with the national 973 project "study on the theory and key technology of optical fiber devices for optical path switching network", the national 863 project "study of 160Gb/s-pump multi-fiber optical transmission technology", and the key project of National Natural Science Foundation "all Optical wavelength Interchange" For key technology research, etc., In this paper, the theory, simulation and experiment of optical time division multiplexing (OTDM), demultiplexing and transmission link management, all-optical clock extraction, optical delay and all-optical switching are studied. The main achievements are as follows:. 1. Picosecond pulse compression is carried out by self-made dispersion decreasing fiber and dispersion shifted fiber, and stimulated Brillouin scattering is effectively suppressed by phase modulation. Using the developed optical time division multiplexer to generate multiplexed signals, the symmetrical strong dispersion spectrum is used to accurately compensate the dispersion and dispersion slope of the 100km transmission link. At the same time, the nonlinear damage in the channel is restrained. A feedback loop structure is proposed based on the stage coupling absorber modulator and the clock extraction module, and the clock enhancement is realized at the same time. Finally, the two-hour error-free transmission and demultiplexing of 160Gb/s OTDM signal 100km are realized. A scheme to improve the spectral utilization ratio of OTDM signal by designing a matched optical filter with demultiplexing window is proposed, which is compared with the original 40Gb/s OTDM signal. The spectral utilization ratio was increased by about 3 times. 2. The all-optical clock extraction technique based on stimulated Brillouin scattering (SBS) is studied, and a numerical model is established to optimize the structure. The enhancement of clock components induced by non-equal-amplitude and non-uniform optical time-division multiplexing signals is analyzed. A single or group clock extraction scheme is proposed, and frame clock extraction is realized. The clock extraction of multi-channel return-to-zero code signal is studied. The maximum frequency interval between two signal clock extraction is theoretically analyzed and verified experimentally. On this basis, a Brillouin gain bandwidth measurement method is proposed. An improved clock component enhancement structure based on semiconductor amplifiers and chirped fiber Bragg grating (CFBG) is proposed. The structural analysis and parameter optimization are carried out by using the established numerical model. The tolerance of clock component enhancement and extraction structure to the deterioration of input signal is studied experimentally. The clock enhancement and extraction of the deteriorated NRZ signal and two NRZ signals are realized. 3. An integrated waveguide delay line based on microring resonator is designed. The effects of the number of microrings and the resonant frequency deviation of microring on the delay characteristics are studied in depth, and an efficient thermo-optical tuning scheme is adopted. At the same time, the delay bandwidth can be increased effectively while the maximum delay amount is guaranteed. The fabrication and encapsulation test of the microloop optical delay line can be completed. The delay amount can be continuously adjusted from 213ps to 0ps, and the multi-branch delay can be continuously adjusted with high precision. 4. An improved downpath and continuation structure based on CFBG is proposed, which is used to realize optical cross-connection function of optical layer multicast. Experiments show that wavelength selection and dispersion compensation can also be realized. Resource configurable real-time video and data services multicast. A distributed network management scheme is introduced to support and manage the specific functions and services of the all-optical network platform based on optical path switching.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TN929.1
【参考文献】
相关期刊论文 前10条
1 史寒星,林金桐;非线性光学环路镜OTDM解复用器的性能分析[J];北京邮电大学学报;1998年04期
2 贾东方,丁永奎,杨天新,李世忱;超高速OTDM进展及Tbit/s级可行性分析[J];电子产品世界;2001年14期
3 高以智,娄采云,姚敏玉,李智红,张剑锋,霍力,董毅,谢世钟;以光纤锁模激光器为发射源实现4×10Gbit/s OTDM信号330km传输[J];电子学报;2002年06期
4 左鹏,伍剑,张帆,林金桐;4×10Gbit/s OTDM系统中10GHz帧时钟提取技术[J];电子学报;2002年07期
5 传输陈勇,曹继红,谭中伟,刘艳,陈婷,马丽娜,常德远,宁提纲,裴丽,简水生;利用CFBG补偿色散实现2015km8×10Gb/s光传输[J];光电子·激光;2005年08期
6 李彬;傅永军;魏淮;简伟;简水生;;高温封装实现光纤光栅的长期稳定[J];光电子·激光;2006年07期
7 刘贤炳,叶培大;4×10Gbit/s光时分复用(OTDM)系统中基于电吸收调制器(EAM)的光分插复用器[J];高技术通讯;2000年09期
8 梁满堂;曹文华;;基于色散渐减光纤的光脉冲压缩技术及其进展[J];光通信技术;2009年04期
9 杨小来;曹文华;靳婉玲;;三类色散渐减光纤环镜光脉冲压缩特性的比较[J];光通信研究;2006年04期
10 梁满堂;曹文华;周佳庆;;基于DDF-MZI的高阶孤子脉冲压缩[J];光通信研究;2009年05期
,本文编号:1679748
本文链接:https://www.wllwen.com/kejilunwen/wltx/1679748.html