一种适用于稀疏无线传感器网络的改进分布式UIF算法
本文选题:稀疏无线传感器网络 + 无效节点 ; 参考:《自动化学报》2014年11期
【摘要】:分布式无迹信息滤波(Distributed unscented information filter,DUIF)算法是一种有效的非线性分布式状态估计多源信息融合方法,然而当将该算法应用于稀疏无线传感器网络(Wireless sensor networks,WSN)时,稀疏WSN中存在的无效节点会引起使滤波趋于发散的平均一致误差.针对该问题,本文提出一种改进DUIF算法.该算法不改变DUIF算法的级联结构,而是将其底层和上层滤波器分别改进为局部无迹信息滤波器(Local unscented information filter,LUIF)和加权平均一致性滤波器.LUIF对每个节点的局部多源观测信息进行局部融合,得到局部的后验估计信息向量和矩阵,进而将它们作为加权平均一致性滤波器的输入,最终得到不包含平均一致误差的分布式后验估计结果.其中,加权平均一致性滤波器是通过对由LUIF输出的局部后验估计信息向量和矩阵分别进行平均一致性滤波而得以在改进DUIF算法框架下实现的.同时,在此过程中,相邻节点之间的状态估计互相关信息也被引入改进DUIF算法的输出结果中,进一步增强了滤波的可靠性.仿真实验结果表明,改进DUIF算法能够在稀疏WSN中对机动目标进行有效跟踪,在估计精度和抑制滤波发散方面明显优于标准DUIF算法.
[Abstract]:Distributed unscented information filter (DUIFA) algorithm is an effective multi-source information fusion method for nonlinear distributed state estimation. However, when the algorithm is applied to sparse wireless sensor networks (WSNs),The existence of invalid nodes in sparse WSN results in an average consistent error which tends to diverge the filtering.To solve this problem, an improved DUIF algorithm is proposed in this paper.The algorithm does not change the cascade structure of the DUIF algorithm.Instead, the local unscented information filter and the weighted average consistency filter. LUIF are improved to the local unscented information filter and the local multi-source observation information of each node, respectively.The local posterior estimation information vector and matrix are obtained, which are used as input of weighted average consistency filter. Finally, the distributed posteriori estimation results without average consistency error are obtained.The weighted average consistency filter is implemented under the framework of the improved DUIF algorithm by using the average consistency filtering of the local posteriori estimation information vector and the matrix output by LUIF.At the same time, the cross-correlation information of state estimation between adjacent nodes is also introduced into the output of the improved DUIF algorithm, which further enhances the reliability of the filter.The simulation results show that the improved DUIF algorithm can effectively track maneuvering targets in sparse WSN and is superior to the standard DUIF algorithm in estimation accuracy and suppression of filtering divergence.
【作者单位】: 第二炮兵工程大学;
【基金】:陕西省基金项目(2012K06-45)资助~~
【分类号】:TP212.9;TN929.5
【参考文献】
相关期刊论文 前1条
1 李长生;王玉振;;端口受控哈密顿多智能体系统的输出一致性协议设计(英文)[J];自动化学报;2014年03期
【相似文献】
相关期刊论文 前10条
1 纪红;无线传感器网络:未来新的高技术产业[J];当代通信;2004年21期
2 李志刚,周兴社;传感器网络[J];计算机应用研究;2004年12期
3 臧丽娜;许明;赵晶;;无线传感器网络的研究与应用[J];商场现代化;2006年27期
4 胡晓荷;;将安全从鸵鸟做到麻雀——北京理工大学胡昌振教授谈无线传感器网络安全[J];信息安全与通信保密;2006年10期
5 刘月阳;李娜娜;纪红;乐光新;;无线传感器网络中基于能量的成簇协议[J];无线电工程;2006年10期
6 马碧春;;无线传感器网络在医疗行业的应用展望[J];中国医院管理;2006年10期
7 戴宁江;邱慧敏;;无线传感器网络的安全问题及对策[J];中国无线电;2006年10期
8 姜华;袁晓兵;付耀先;刘海涛;;无线传感器网络中信道仿真模型的研究[J];计算机仿真;2006年11期
9 邱建林;陆桑璐;陈道蓄;;一种无线传感器网络的多优先级数据聚集协议[J];小型微型计算机系统;2006年11期
10 陆克中;黄刘生;万颍渝;徐宏力;;无线传感器网络中传感器节点的布置[J];小型微型计算机系统;2006年11期
相关会议论文 前10条
1 唐云龙;;无线传感器网络系统实验分析[A];工程设计与计算机技术:第十五届全国工程设计计算机应用学术会议论文集[C];2010年
2 杜景林;陈力军;谢立;;无线传感器网络与互联网集成体系结构[A];2008年全国开放式分布与并行计算机学术会议论文集(下册)[C];2008年
3 刘昊;;面向电子智能服装的人体无线传感器网络构建[A];“力恒杯”第11届功能性纺织品、纳米技术应用及低碳纺织研讨会论文集[C];2011年
4 李华;李文秀;;无线传感器网络技术在养殖业污染防治上的应用前景[A];全国畜禽和水产养殖污染监测与控制治理技术交流研讨会论文集[C];2008年
5 李洁;任海风;;K重覆盖无线传感器网络优化[A];中国计量协会冶金分会2011年会论文集[C];2011年
6 余e,
本文编号:1762394
本文链接:https://www.wllwen.com/kejilunwen/wltx/1762394.html