当前位置:主页 > 科技论文 > 网络通信论文 >

从功能性近红外光谱法的光学信号中提取心动和呼吸特征

发布时间:2018-04-22 07:27

  本文选题:医用光学 + 功能性近红外光谱成像 ; 参考:《光学学报》2015年09期


【摘要】:认知神经科学的快速发展,使得各种生理参数的客观测量得以实现,其中功能性近红外光谱(f NIRS)是一种新兴的脑成像方法,可以检测经过人体皮肤组织的血液动力学指标,包括含氧血红蛋白(Hb O)、脱氧血红蛋白(Hb)和总血红蛋白(t Hb)含量。心电图(ECG)、呼吸波(RSP)则是常用的生理参数检测方法。研究目的是尝试利用f NIRS方法测得心率(HR)和呼吸率(BR)特征,利用时域形态学特征法、频域带通滤波法以及小波分解与重构方法提取心率及呼吸率,并与ECG、RSP真实信号的HR(77.0199)、BR(22.9153)进行对比。结果发现三种方法均可从f NIRS信号中提取出HR信号,其中用频域带通滤波器方法得到的HR为76.8807,偏差最小为-0.1392,利用相同方法提取的BR为21.7039,偏差为-1.2114。基本实现了从f NIRS信号中提取心率和呼吸率的目标。
[Abstract]:The rapid development of cognitive neuroscience has made the objective measurement of various physiological parameters possible. Functional near infrared spectroscopy (f NIRS) is a new brain imaging method, which can detect the hemodynamic indices of human skin tissue, including Hb O, Hb and t Hb. Electrocardiogram (ECG) and respiratory wave (RSP) are commonly used physiological parameters detection methods. The purpose of this study is to use the f NIRS method to detect the heart rate (HR) and respiratory rate (BR) characteristics, using the time domain morphological characteristics, frequency band pass filtering and wavelet decomposition and reconstruction method to extract heart rate and respiration rate, and HR (77.0199) of ECG, RSP real signal. Compared with BR (22.9153), it is found that the three methods can extract the HR signal from the f NIRS signal, in which the HR of the frequency band pass filter is 76.8807, the minimum deviation is -0.1392, the BR obtained by the same method is 21.7039, and the deviation is -1.2114. is basically the target of extracting heart rate and respiration rate from the f NIRS signal.

【作者单位】: 中国航天员科研训练中心人因工程重点实验室;天津大学精密仪器与光电子工程学院;
【基金】:国家973计划(2011CB711000,HF2011Z-Z-B-02)
【分类号】:R33;TN911.7

【参考文献】

相关期刊论文 前6条

1 夏慧;刘文清;张玉钧;阚瑞峰;王敏;何莹;崔益本;阮俊;耿辉;;An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy[J];Chinese Optics Letters;2008年06期

2 朱,

本文编号:1786213


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/1786213.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户69bd2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com