伽罗华环上指数和及其在通信中的应用
发布时间:2018-05-17 10:11
本文选题:高斯和 + 雅可比和 ; 参考:《合肥工业大学》2014年博士论文
【摘要】:有限域上高斯和与雅可比和,作为指数和的特殊情况,不仅是数论中研究的重要对象,而且在通信中已有广泛的应用,伽罗华环上指数和是有限域上指数和的推广,随着有限域上纠错码理论的迅速发展,伽罗华环及其上的指数和也受到众多学者的关注和重视,被用于构造好参数的纠错码以及相关性好的序列等。 本文主要研究了伽罗华环GR(p2,r)上高斯和与雅可比和及其在通信中的应用。首先,给出了伽罗华环GR(p2,r)上加法特征及乘法特征,定义了伽罗华环GR(p2,r)上的高斯和与雅可比和,计算了伽罗华环GR(p2,r)上高斯和与雅可比和在平凡和非平凡情况下的值,并证明了在所有非平凡的情况下,可将伽罗华环GR(p2,r)上高斯和与雅可比和的计算化简到有限域Fpr的情况,给出了伽罗华环GR(p2,r)上高斯和与雅可比和的关系式,得到了伽罗华环GR(p2,r)与环R(l)=GR(p2,rl)(l≥1)上高斯和及雅可比和的关系。其次,将伽罗华环GR(p2,r)上高斯和与雅可比和应用于两方面:一方面利用伽罗华环GR(p2,r)上的高斯和的值,得到环Zp2上的几类线性码的重量分布,在此基础上,利用伽罗华环GR(p2,r)上高斯和的Davenport-Hasse提升,得到环Zp2上一系列线性码C(l)={cβ(l)=(TR(l)(βx))x∈H(l):β∈R(l)}的重量分布,其中H(l)是环R(l)的单位群R(l)*的子群,Tr(l)是环R(l)到环Zp2的迹映射,并通过Gray映射从环Zp2上线性码得到了有限域Fp上好参数的线性码与非线性码;另一方面利用伽罗华环GR(p2,r)上高斯和、雅可比和以及张量方法给出新参数的近似相互无偏正交基的三种构造方法。
[Abstract]:As a special case of exponential sum, Gao Si sum and Jacobian sum on finite field are not only important objects in number theory, but also widely used in communication. The exponential sum on Galois ring is a generalization of exponential sum on finite field. With the rapid development of error-correcting code theory over finite fields, many scholars pay attention to the Galois ring and its exponent sum, which are used to construct error-correcting codes with good parameters and sequences with good correlation, etc. In this paper, the Gao Si sum and Jacobian sum on Galova ring GRP2 / r and their applications in communication are studied. First of all, the additive and multiplicative characteristics of the Galova ring GRP2Or) are given. The sum of Gao Si and Jacobian on the Galova ring GRP2Or) is defined. The values of Gao Si sum and Jacobian sum in ordinary and nontrivial cases are calculated. It is proved that the Gao Si sum and Jacobian sum can be simplified to finite field Fpr in all nontrivial cases, and the relation between Gao Si sum and Jacobian sum on Galova ring GRp2G) is given. The relations between the Gao Si sum and Jacobian sum on the Galova ring GRP2N) and the ring RGV P2N rll 鈮,
本文编号:1900971
本文链接:https://www.wllwen.com/kejilunwen/wltx/1900971.html