面向抗噪语音识别的SVM关键问题研究
[Abstract]:Speech recognition is an important technology of human-computer interaction and pattern recognition, which has a broad application prospect. The research on speech recognition has important theoretical significance and practical value. At present, most speech recognition systems are only suitable for the recognition of "pure" speech. When there is noise or different training and testing environments, the performance of the recognition system will decline sharply, and the performance of the system needs to be improved. However, common speech recognition methods are difficult to achieve good results. As a new pattern recognition method, support vector machine (SVM) is based on structural risk minimization principle and VC dimension theory. The classification problems such as nonlinear and local optimal solutions are suitable for speech signal characteristics and have been applied to speech recognition. This paper focuses on how to improve the comprehensive performance of speech recognition system based on support vector machine. It selects the multi-class classification method of anti-noise speech recognition system, and selects and constructs the kernel function of support vector machine. From the point of view of accelerating the training speed of speech recognition system, the application of support vector machine in speech recognition system is analyzed and studied. The main research results can be summarized as follows: (1) the theoretical basis and basic principle of support vector machine are studied in detail, and the robustness of support vector machine algorithm is analyzed theoretically. Therefore, the support vector machine is selected as the recognition method in this paper, and the speech recognition system based on support vector machine is constructed, and the basic principle, general process, model training and pattern matching of speech recognition are analyzed in detail. The design and recording process of speech database are studied, and the Chinese 500 word speech database is established. (2) in order to improve the noise resistance of speech recognition system, this paper deeply studies the strategy of support vector machine (SVM) to solve the multi-class classification problem. The principle of M-ary and error-correcting output coding in communication system is introduced into the speech recognition of support vector machine for the first time. The simulation results show that in pure and noisy speech environment, the error correction output coding method has good robustness. (3) Kernel function is very important for support vector machine, which directly determines the final performance of support vector machine. Therefore, the selection and construction of kernel function occupy an important position in the theoretical research of support vector machine. In this paper, two new kernel functions, namely: Logistic and ORF kernel functions, are proposed. It is proved that they are Mercer kernel functions respectively. The new kernel functions are proved to be effective by the experiments of the double helix test problem, Vowel and TiDigits, of isolated word phonetic corpus, and the results show that the new kernel function is a Mercer kernel function. Application in speech recognition has good generalization performance and anti-noise ability. (4) in order to improve the real-time performance of speech recognition system, the training speed of standard support vector machine is accelerated. Considering the local similarity of speech samples and the weak correlation between non-adjacent samples, an improved local support vector machine (LSVM) algorithm model is proposed, and the description of the improved algorithm is given. Local kernel function proof and concrete flow, through the experiments of Vowelen CASIA Chinese digital string ISOLET and Chinese 500-word phonetic corpus, it is verified that the improved local support vector machine algorithm can effectively shorten the training time of speech recognition system in the aspect of speech recognition.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TN912.34;TP181
【参考文献】
相关期刊论文 前10条
1 肖志博;王焕钢;肖英超;徐文立;;面向大规模数据集的单类支持向量机[J];东南大学学报(自然科学版);2013年S1期
2 努尔麦麦提·尤鲁瓦斯;吾守尔·斯拉木;;面向大词汇量的维吾尔语连续语音识别研究[J];计算机工程与应用;2013年09期
3 朱莹莹;尹传环;牟少敏;;一种改进的局部支持向量机算法[J];计算机工程与科学;2013年02期
4 王磊;屈卫东;;应用PCA-SVM对伺服阀进行故障诊断[J];自动化仪表;2013年01期
5 秦春香;黄浩;;发音特征在维汉语音识别中的应用[J];计算机工程;2012年23期
6 武晓敏;达瓦·伊德木草;吾守尔·斯拉木;;自然语料缺乏的民族语言连续语音识别[J];计算机工程;2012年12期
7 李冠宇;孟猛;;藏语拉萨话大词表连续语音识别声学模型研究[J];计算机工程;2012年05期
8 徐子豪;张腾飞;;基于语音识别和无线传感网络的智能家居系统设计[J];计算机测量与控制;2012年01期
9 尹传环;牟少敏;田盛丰;黄厚宽;朱莹莹;;局部支持向量机的研究进展[J];计算机科学;2012年01期
10 徐星;李元香;吴昱;金彤;;基于粒子群优化算法的Logistic模型参数估计[J];电子学报;2010年S1期
相关会议论文 前1条
1 苏毅;吴文虎;郑方;方棣棠;;基于支持向量机的语音识别研究[A];第六届全国人机语音通讯学术会议(NCMMSC6)论文集[C];2001年
相关博士学位论文 前10条
1 吕钊;噪声环境下的语音识别算法研究[D];安徽大学;2011年
2 梁锦锦;支持向量机和支持向量域描述的若干问题研究[D];西安电子科技大学;2009年
3 杜俊;自动语音识别中的噪声鲁棒性方法[D];中国科学技术大学;2009年
4 吴斌;语音识别中的后处理技术研究[D];北京邮电大学;2008年
5 彭新俊;支持向量机若干问题及应用研究[D];上海大学;2008年
6 龙潜;噪声环境下的语音识别技术研究[D];中国科学技术大学;2007年
7 董婧;鲁棒语音识别技术的研究[D];吉林大学;2007年
8 宁更新;抗噪声语音识别新技术的研究[D];华南理工大学;2006年
9 吴涛;核函数的性质、方法及其在障碍检测中的应用[D];中国人民解放军国防科学技术大学;2003年
10 夏建涛;基于机器学习的高维多光谱数据分类[D];西北工业大学;2002年
相关硕士学位论文 前9条
1 贺元元;支持向量机样本预选取技术在语音识别中的应用研究[D];太原理工大学;2012年
2 段继康;多类分类支持向量机在语音识别中的应用研究[D];太原理工大学;2010年
3 魏春明;语音变化分析及其在孤立词识别中的应用[D];浙江大学;2010年
4 童红;孤立词语音识别系统的技术研究[D];江苏大学;2009年
5 郭月玲;支持向量机在语音识别中的应用研究[D];太原理工大学;2009年
6 陈程;机载环境下的语音识别技术及实现[D];电子科技大学;2008年
7 崔毓菁;语音识别系统速度优化算法研究[D];北京邮电大学;2008年
8 王一平;用遗传算法改进HMM的语音识别算法研究[D];太原理工大学;2007年
9 罗迪君;基于核方法的纠错输出编码多类分类算法改进[D];浙江大学;2006年
,本文编号:2131564
本文链接:https://www.wllwen.com/kejilunwen/wltx/2131564.html