基于不完整自然梯度的盲分离算法研究
[Abstract]:Blind source separation (BSS) is a process of separating and restoring unobservable original signals from a series of mixed signals under the condition of unknown mixing matrix. BSS is a basic problem in signal processing and communication, especially in speech recognition. Biomedical signal processing, remote sensing, radar and communication systems, seismic exploration and other aspects have a prominent role. First of all, this paper introduces the technical background of blind source separation and the research status at home and abroad, summarizes the basic theory of blind source separation, including probability theory, matrix, information theory and mathematical model of blind source separation. In this paper, the general solution process of blind source separation is introduced, the natural gradient algorithm and incomplete natural gradient algorithm are introduced, and the shortcomings of the algorithm are analyzed. Then, aiming at the shortcomings of natural gradient algorithm and incomplete natural gradient algorithm, a variable step size incomplete natural gradient algorithm based on symbol operator is proposed. The incomplete natural gradient algorithm is combined with the symbol operator derived from the general dynamic separation model and the variable step size based on the gradient of the cost function is added. The introduction of symbol operator accelerates the convergence speed of the algorithm. The variable step size based on the gradient of cost function balances the contradiction between convergence speed and steady state error. At the same time, a new constraint algorithm based on incomplete natural gradient is proposed to solve the non-stationary environment problem. The cost function is constrained by the disturbance of the system. In order to speed up the convergence rate, this paper proposes a new constraint algorithm based on incomplete natural gradient. The constraint factor of the algorithm is adaptively adjusted according to the separation condition, which solves the contradiction between the convergence speed and the steady-state error. The computer simulation results show that compared with the traditional algorithm, the new algorithm can achieve a better separation effect. Finally, the work of this paper is summarized, and it is pointed out that there are still some problems to be further studied and solved in blind source separation, including noise-containing problems, underdetermined problems, and so on. There is still a lot of room for development in theory and application.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.7
【相似文献】
相关期刊论文 前10条
1 李广彪,张剑云,毛云祥;盲源分离的发展及研究现状[J];航天电子对抗;2004年06期
2 王昆;;盲源分离问题的分析研究[J];科技信息;2008年29期
3 柯维;张永祥;吕博;;基于微分进化算法的盲源分离[J];海军工程大学学报;2012年05期
4 林秋华,殷福亮;盲源分离自适应算法的统一形式[J];大连理工大学学报;2002年04期
5 刘海林;谢胜利;章晋龙;;微延迟病态卷积混叠盲源分离的可分性研究[J];计算机科学;2003年07期
6 吴微东,庄哲民;基于盲源分离的一种快速独立分量分析算法[J];汕头大学学报(自然科学版);2004年02期
7 郭松;孙云莲;;基于独立分量分析盲源分离快速算法[J];电子测量技术;2004年02期
8 丁铎,贾永强,王映民;一种基于峰度的盲源分离算法研究[J];现代电子技术;2005年14期
9 肖俊,何为伟;源信号数目大于观察信号数目情况下的盲源分离[J];现代电子技术;2005年11期
10 李广彪,张剑云,毛云祥;盲源分离中的非高斯性极大准则[J];舰船电子对抗;2005年05期
相关会议论文 前10条
1 李舜酩;;转子振动信号的盲源分离研究[A];第三届全国虚拟仪器大会论文集[C];2008年
2 许林周;章新华;范文涛;;一种盲源分离后续去冗余方法[A];2009年全国水声学学术交流暨水声学分会换届改选会议论文集[C];2009年
3 韩少博;林京;吴文焘;;频域盲源分离中的一种稳健解排列模糊方法[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
4 章林柯;何琳;江涌;;基于盲源分离的潜艇源识别信号去除干扰研究[A];第十一届船舶水下噪声学术讨论会论文集[C];2007年
5 康春玉;章新华;李军;;盲源分离与自适应滤波器结合抑制强干扰研究[A];2012'中国西部声学学术交流会论文集(Ⅱ)[C];2012年
6 周祥;樊涛;;基于盲源分离的储油罐底腐蚀混叠信号的识别与分离[A];第八届沈阳科学学术年会论文集[C];2011年
7 王颖翠;;一种基于自然梯度的卷积混合频域盲源分离算法[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
8 许策;章新华;高成志;;源数目估计对盲源分离算法影响分析[A];2007年全国水声学学术会议论文集[C];2007年
9 成谢锋;张仲;孙夏;;一种单路混合信号的盲源分离新方法[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
10 胡增辉;朱炬波;;基于盲源分离的波达角估计[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
相关博士学位论文 前10条
1 张良俊;欠定盲源分离算法及其应用研究[D];武汉理工大学;2015年
2 吴微;含噪盲源分离算法研究及其在水声信号中的应用[D];解放军信息工程大学;2014年
3 徐先峰;利用参量结构解盲源分离算法研究[D];西安电子科技大学;2010年
4 王尔馥;盲源分离理论及其在通信系统中的应用[D];哈尔滨工业大学;2009年
5 李昌利;盲源分离的若干算法及应用研究[D];西安电子科技大学;2010年
6 高建彬;盲源分离算法及相关理论研究[D];电子科技大学;2012年
7 郭靖;盲源分离的时频域算法研究[D];重庆大学;2012年
8 张念;盲源分离理论及其在重磁数据处理中的应用研究[D];中国地质大学;2013年
9 刘建强;非平稳环境中的盲源分离算法研究[D];西安电子科技大学;2009年
10 李灯熬;基于循环平衡理论的盲源分离算法[D];太原理工大学;2010年
相关硕士学位论文 前10条
1 彭帆;多输入多输出系统盲源分离频域新方法的研究[D];汕头大学;2002年
2 程舒慧;动态盲源分离及其在生物医学信号处理中的应用研究[D];安徽大学;2011年
3 张政;基于独立分量分析的盲源分离算法优化研究[D];南京信息工程大学;2015年
4 高鹏;基于单通道盲源分离理论的故障特征提取技术[D];长安大学;2015年
5 姚鑫;基于EEMD的单通道盲源分离研究与应用[D];大连交通大学;2015年
6 张颖;低角雷达盲信号分离方法研究[D];河南师范大学;2015年
7 吴康锐;基于空间几何信息约束的欠定卷积盲源分离[D];南昌大学;2015年
8 李莽;盲源分离在信号探测中的应用[D];电子科技大学;2014年
9 宋继飞;噪声条件下欠定盲源分离算法研究[D];大连理工大学;2015年
10 甘一凡;基于盲源分离的车辆检测与分类技术研究[D];电子科技大学;2015年
,本文编号:2189381
本文链接:https://www.wllwen.com/kejilunwen/wltx/2189381.html