阳煤集团视频异常监控系统设计与实现
[Abstract]:Along with the development of the times, the progress of science and technology not only brings convenience to us, but also brings all kinds of latent or emerging crises. At present, the monitoring system has spread all over the major banks, supermarkets, residential areas, mainly because people are unable to guard against criminal acts. However, if there is monitoring, can we rest assured? obviously, the answer is no. With the technical refinement of the perpetrators, the definition of criminal behavior is more precise. In order to ensure group security, abnormal monitoring becomes particularly important, and intelligent management and monitoring will greatly reduce manpower work and unnecessary trouble. Based on this requirement, this paper tries to introduce new ideas. The technology of abnormal scene monitoring in video content is to use the camera to view the scene and the computer to analyze the data of the scene without human intervention to realize the discovery of the abnormal object in the static scene. The development of video scene abnormal monitoring technology and integration into the normal video surveillance system will effectively improve the monitoring ability, reduce the hidden dangers of insecurity, at the same time, can save human and material resources to a certain extent and save investment. The research of abnormal scene monitoring technology in video content can supplement and extend the existing video exception processing system and can be placed in the video monitoring system as the basic link to simplify the processing process and improve the processing efficiency. This paper mainly discusses some problems existing in the existing monitoring system, and attempts to innovate the system based on these problems. Firstly, it describes the technology and methods used in the system development, and then introduces the main functions of each module in the system. The next step is to examine the existing systems, and finally to analyze the defects in the molecular system and where improvements can be made. In the recognition of abnormal behavior, the discriminant criterion of human abnormal behavior is given by using the characteristics of abnormal behavior. In order to determine whether the target in a specific monitoring area, such as changes, climbing, residual objects and other abnormal conditions, and issued an alarm. The experimental results show that the proposed method is simple, fast and accurate. The research and development of this system has not only greatly improved the working efficiency of the relevant staff and freed them from the heavy work, but also, to our credit, the development of this technology has improved the accuracy and resolution of the monitoring system. Can effectively reduce judgment errors, thereby avoiding unnecessary trouble.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP391.41;TN948.6
【相似文献】
相关期刊论文 前10条
1 罗超宇;;基于视频序列的人体异常行为检测技术分析[J];电子制作;2013年18期
2 崔永艳;高阳;;基于多示例学习的异常行为检测方法[J];模式识别与人工智能;2011年06期
3 陆海先;郭立;桂树;谢锦生;;基于潜在主题的视频异常行为分析[J];通信技术;2012年07期
4 周维柏;李蓉;;基于轨迹特征分析的行人异常行为识别[J];电脑编程技巧与维护;2010年12期
5 李晓东;凌捷;;基于视频监控参考量的异常行为检测研究[J];计算机技术与发展;2012年09期
6 姬晓飞;吴倩倩;李一波;;改进时空特征的人体异常行为检测方法研究[J];沈阳航空航天大学学报;2013年05期
7 桑海峰;郭昊;徐超;;基于运动特征的人体异常行为识别[J];中国科技论文;2014年07期
8 王传旭;董晨晨;;基于时空特征点的群体异常行为检测算法[J];数据采集与处理;2012年04期
9 沈海燕;冯云梅;史宏;;基于信息融合的客运站人体异常行为识别研究[J];公路交通科技;2009年S1期
10 陈颖鸣;陈树越;张显亭;;智能视频监控中异常行为识别研究[J];微电子学与计算机;2010年11期
相关会议论文 前1条
1 王碧英;孙健敏;;公仆型领导对员工行为的影响[A];第十二届全国心理学学术大会论文摘要集[C];2009年
相关博士学位论文 前5条
1 林娜;小鼠异常行为的遗传基础研究[D];东北农业大学;2006年
2 Popoola Oluwatoyin Pius;拥挤环境下的异常行为检测研究[D];哈尔滨工程大学;2012年
3 张军;基于视频的运动人体异常行为分析识别研究[D];西安电子科技大学;2009年
4 刘皓;基于条件随机场模型的异常行为检测方法研究[D];中国科学技术大学;2014年
5 张毅;MANET环境中基于移动Agent的异常行为检测与防御[D];哈尔滨工程大学;2007年
相关硕士学位论文 前10条
1 张雁冰;监控视频中人体异常行为检测研究[D];深圳大学;2015年
2 梁玉;基于ORB兴趣点的异常行为检测技术研究[D];郑州大学;2015年
3 陈岗;治安监控中基于计算机视觉的异常行为检测技术研究[D];上海交通大学;2015年
4 许龙;视频中的异常行为检测与分析研究[D];上海交通大学;2015年
5 姚源;视频中异常行为发现方法研究及实现[D];电子科技大学;2014年
6 王朝新;基于视频的行人异常行为检测技术的应用研究[D];电子科技大学;2014年
7 张海峰;阳煤集团视频异常监控系统设计与实现[D];电子科技大学;2014年
8 崔永艳;基于多示例学习的异常行为检测方法研究[D];南京大学;2011年
9 张彦杰;人体异常行为检测技术的研究[D];天津大学;2012年
10 李晓东;基于监控视频的异常行为检测技术研究[D];广东工业大学;2012年
,本文编号:2204109
本文链接:https://www.wllwen.com/kejilunwen/wltx/2204109.html