准循环LDPC码的构造算法研究
[Abstract]:LDPC (Low-Density Parity-Check, low density parity check) code is one of the most widely accepted channel coding techniques with the best error-correcting performance. It can be used in almost all channels, and the structure of the check matrix H is very simple. It has the error correction performance of approaching Shannon limit. In practical engineering implementation, the implementation of encoder and decoder is very simple and can save resources by parallel operation. QC-LDPC code is a kind of structured LDPC code. So that it can achieve linear complexity coding. The main content of this paper is the theoretical research and performance analysis of the alignment cyclic LDPC code construction algorithm. The main work includes: (1) from the definition of LDPC code, through the construction algorithm, coding and decoding algorithm in-depth analysis, And the basic concept of quasi-cyclic LDPC code, this paper makes a systematic, detailed and in-depth analysis of the basic theory of LDPC code, so that we can grasp the LDPC code from the whole. (2) the construction algorithm of quasi-cyclic LDPC code based on BIBD. This paper first introduces the traditional algorithm of constructing LDPC code based on BIBD in the literature, establishes the relation between block and check matrix by using the correlation matrix, and then introduces a method of replacing the correlation matrix with position vector. The improved algorithm which establishes the relation between the elements in block groups and the check matrix respectively, expands the column 4:1 and reduces the column weight to 1 / 4. The above two algorithms are realized based on the addition operation in the finite domain. An algorithm for constructing quasi-cyclic LDPC codes based on multiplicative group and BIBD is obtained by replacing the addition operation of elements with the power multiplication operation of primitive elements. The simulation results of the three algorithms show that the performance of the two improved algorithms is improved in Gao Si white noise channel, and the performance of iterative decoding is improved. The second improved algorithm is faster than the former two algorithms. (3) Quasi-cyclic LDPC codes based on PEG algorithm. The PEG construction algorithm based on Tanner graph is one of the best random construction algorithms, which is very suitable for constructing LDPC codewords with short code length. By using the unit cyclic permutation matrix to extend the base matrix based on the PEG algorithm, a kind of check matrix with quasi-cyclic property can be obtained, and the size of the extended submatrix can be changed. The improved PEG algorithm can be used to construct code words of arbitrary code length, so that the PEG algorithm is no longer limited by the length of the codeword. At the same time, by modifying the shift parameter of the submatrix corresponding to the short ring in the base matrix, the girth of the constructed check matrix can be increased, and the error correction performance of the constructed LDPC codeword can be improved. The simulation results show that the error-correcting performance of the LDPC codes constructed by the matrix extended PEG algorithm is very similar to that of the LDPC codes constructed by the traditional PEG algorithm. At the same time, the existence of submatrix can make the parameter selection of LDPC code more flexible. Moreover, the improved algorithm has the property of quasi-cyclic structure and simplifies the encoding and decoding process.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.22
【相似文献】
相关期刊论文 前10条
1 强宇,刘宗田,林炜,时百胜,李云;一种模糊概念格构造算法研究[J];计算机工程与应用;2004年29期
2 樊建席;最小T-2倍树的构造算法[J];青岛大学学报(自然科学版);1996年04期
3 杨凯;马垣;张小平;;基于属性的概念格快速渐进式构造算法[J];计算机应用与软件;2006年12期
4 杨海峰;张继福;;粗糙概念格及构造算法[J];计算机工程与应用;2007年24期
5 余远;钱旭;钟锋;李晓瑞;;基于最大概念的概念格增量构造算法[J];计算机工程;2009年21期
6 赵焕平;;圈图的点可区别强全染色算法[J];计算机与现代化;2013年09期
7 董辉;马垣;宫玺;;概念格并行构造算法研究[J];广西师范大学学报(自然科学版);2008年03期
8 郑金英;滕春霞;;概念格构造算法的现状与发展前景[J];硅谷;2011年22期
9 林春杰;普杰信;张瑞玲;;近似概念格及其增量构造算法研究[J];计算机应用研究;2012年01期
10 杜秋香;张继福;张素兰;;概念特化的概念格更新构造算法[J];智能系统学报;2008年05期
相关会议论文 前5条
1 曲立平;刘大昕;杨静;张万松;;基于属性的概念格快速渐进式构造算法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
2 杨本良;;压缩候选的贝叶斯信念网络构造算法[A];广西计算机学会2005年学术年会论文集[C];2005年
3 申锦标;;一种新颖的概念格构造算法[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
4 高茜;周大均;李爱民;;Petri网改进的可覆盖性树的构造算法[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
5 韩锋;张鸿宾;;不连通模型上多尺度Reeb图的构造算法[A];2008'中国信息技术与应用学术论坛论文集(二)[C];2008年
相关硕士学位论文 前10条
1 张海燕;准循环LDPC码的构造算法研究[D];西安电子科技大学;2014年
2 王绍斐;概念格构造算法的研究及其在本体中的应用[D];大连交通大学;2010年
3 刘晓今;概念三元格构造算法及应用研究[D];西安电子科技大学;2013年
4 吴新荣;全可逆递进网格构造算法研究[D];中南大学;2007年
5 黄永城;基于多核环境的基因贝叶斯网络构造算法研究与实现[D];上海交通大学;2012年
6 刘丹丹;无线传感器网络中拓扑构造算法的研究[D];曲阜师范大学;2014年
7 张海龙;协议缓冲区数据的构造与解析软件设计与实现[D];哈尔滨工业大学;2012年
8 赵男;基于MapReduce的分布式极图构造算法研究[D];北京交通大学;2013年
9 金梁;概念格Chein构造算法的改进[D];河南大学;2008年
10 张赛男;无线网状网络中基于粘液菌算法的子图构造算法的研究[D];北京邮电大学;2014年
,本文编号:2216019
本文链接:https://www.wllwen.com/kejilunwen/wltx/2216019.html