无迹卡尔曼滤波及其在SINS初始对准中的应用
[Abstract]:Initial alignment is a key technology of sins (Strapdown Inertial Navigation System,SINS. Filtering (state estimation) plays an important role in initial alignment. When the error model is linear, the classical Kalman filter has a very good estimation effect. When the error model is nonlinear, the estimation effect of different nonlinear filtering methods is different. Unscented Kalman filter (Unscented Kalman Filter, UKF) is an excellent nonlinear filtering method. Since its birth, it has been widely used in engineering. It is very important for the filtering accuracy and stability of UKF to adjust the parameter 魏 freely. Traditionally, it is considered that the filtering accuracy is optimal when n 魏 = 3 (n is the dimension of the state variable). However, with the production of volumetric Kalman filter (Cubature Kalman Filter,CKF), the traditional value of freely adjusted parameters is faced with great problems. Because from the view of filtering method, CKF filter is a special case of UKF filter when the parameter 魏 = 0. Under different dimensions, the accuracy of the two filtering methods is different. Therefore, the effect of 魏 on the accuracy of UKF filtering is mainly studied with the freely adjusted parameters as the core. At the same time, two modelled UKF algorithms are given to solve the problem of linear equations in the filter model. In this paper, the distribution characteristics of gravity field, two definitions of earth shape, and the definitions of longitude and latitude are introduced. The coordinate system and coordinate transformation are introduced in detail, and the error equation of strapdown inertial navigation system is derived. In this paper, the process of extended and non-extended UT transform is given, and the extended and non-extended UKF filtering algorithms are also given. For the comparison of the accuracy of the two filtering algorithms, the expressions of extended and non-extended UKF based on Taylor expansion are derived, and the accuracy of the two filtering methods under different dimensions and different adjusting parameters are analyzed. At the same time, the accuracy of the two filtering methods is compared based on the mean, variance and odd moment. It is pointed out that it is better to choose extended or non-extended UKF under two adjusting parameters. At the same time, the expression of the mean approximation error of UKF is deduced, and the correlation between the value of 魏 and the system model is proved. Furthermore, an online adjustment algorithm of 魏, self-tuning UKF algorithm, is proposed. The first step of the whole algorithm is to select the value of 魏 according to the model, so that the error of estimation can be minimized under several pre-set 魏. Then the filter is adjusted online according to the one-step prediction information of the measurement at every time, which makes the filter estimate to be optimal. Compared with the UKF, with fixed parameters, the estimation accuracy of the online adjustment algorithm will be improved. If one of the equations of state or measurement is linear, the UKF algorithm is simplified and two modelled UKF. are derived. In this paper, the computational complexity of two modeling UKF algorithms is analyzed quantitatively. Compared with the traditional UKF algorithm, the computational complexity of the two modeling algorithms will be reduced at the same time as the accuracy will not be reduced. Finally, according to the characteristics of SINS error model, self-adjusting UKF and modelled UKF are applied to initial alignment to solve the problems of low accuracy and large computational complexity of traditional UKF estimation, respectively. The simulation results show the effectiveness of the two nonlinear filtering algorithms and provide a strong theoretical guarantee for practical engineering applications.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN713;TN96
【参考文献】
相关期刊论文 前10条
1 孙枫;唐李军;;Cubature卡尔曼滤波与Unscented卡尔曼滤波估计精度比较[J];控制与决策;2013年02期
2 孙枫;唐李军;;基于CKF的SINS大方位失准角初始对准[J];仪器仪表学报;2012年02期
3 穆静;蔡远利;;迭代容积卡尔曼滤波算法及其应用[J];系统工程与电子技术;2011年07期
4 戴邵武;郑智翔;戴洪德;曹亮杰;;非线性滤波在捷联惯导系统初始对准中的应用[J];海军航空工程学院学报;2011年01期
5 周卫东;乔相伟;吉宇人;孟凡彬;;基于新息和残差的自适应UKF算法[J];宇航学报;2010年07期
6 王婷婷;郭圣权;;粒子滤波算法的综述[J];仪表技术;2009年06期
7 赵琳;王小旭;丁继成;曹伟;;组合导航系统非线性滤波算法综述[J];中国惯性技术学报;2009年01期
8 严恭敏;严卫生;徐德民;;简化UKF滤波在SINS大失准角初始对准中的应用[J];中国惯性技术学报;2008年03期
9 马建军;郑志强;;基于插值非线性滤波的SINS静基座初始对准[J];系统仿真学报;2007年12期
10 张卫明;张继惟;范子杰;钟山;;UKF方法在惯性导航系统初始对准中的应用研究[J];系统工程与电子技术;2007年04期
相关博士学位论文 前8条
1 张鑫明;非线性滤波在通信与导航中的应用研究[D];北京邮电大学;2012年
2 唐李军;Cubature卡尔曼滤波及其在导航中的应用研究[D];哈尔滨工程大学;2012年
3 张义;舰船捷联惯性系统初始对准技术研究[D];哈尔滨工程大学;2012年
4 赵桂玲;船用光纤捷联惯导系统标定与海上对准技术研究[D];哈尔滨工程大学;2011年
5 朱胤;非线性滤波及其在跟踪制导中的应用[D];哈尔滨工业大学;2009年
6 徐佳鹤;基于UKF的滤波算法设计分析与应用[D];东北大学;2008年
7 武元新;对偶四元数导航算法与非线性高斯滤波研究[D];国防科学技术大学;2005年
8 李涛;非线性滤波方法在导航系统中的应用研究[D];国防科学技术大学;2003年
相关硕士学位论文 前2条
1 陆海勇;捷联惯性导航系统中UKF滤波技术的应用研究[D];南京航空航天大学;2009年
2 王进;捷联惯导系统罗经对准方法研究[D];国防科学技术大学;2005年
,本文编号:2224018
本文链接:https://www.wllwen.com/kejilunwen/wltx/2224018.html