基于基片集成波导技术的超宽带陷波天线的研究与设计
[Abstract]:Ultra-wideband (UWB) antenna is an antenna with an absolute bandwidth of more than 500MHz and a relative bandwidth of more than 20% between 3.1-10.6GHz. Since UWB technology was opened from military technology to civilian technology, it has been widely used in short-range wireless communication systems and microwave imaging technology. In this paper, the UWB antenna used in microwave imaging technology is studied. High directivity, high gain and low loss are the most important targets of antenna design for microwave imaging. The UWB antenna based on substrate integrated waveguide technology has low profile, low loss and high directivity. High gain and easy to integrate with other planar circuits and systems. Firstly, the realization method and design rules of the substrate integrated waveguide are introduced, and the transmission and scattering characteristics of the substrate integrated waveguide are studied and analyzed. Then, the conversion structure of substrate integrated waveguide and microstrip and the conversion structure of substrate integrated waveguide and grounded coplanar waveguide are studied and designed. Based on the characteristics of the substrate integrated waveguide with low loss and the high directivity of the waveguide slot antenna, the ultra-wideband antenna used in microwave imaging is designed. The working frequency range of the antenna is 4.04-10.64 GHz, and the relative bandwidth is 90 GHz. The pattern of E plane and H plane is consistent in the whole frequency band and has strong directivity. On this basis, the notch in WLAN (5.725-5.825GHz) band is realized by loading an open ring resonator as a parasitic element. Finally, an antenna impedance matching method based on substrate integrated waveguide technology is proposed. Combined with microwave transmission line theory, the equivalent model and analytical design method of matching structure are proposed. The impedance bandwidth of matching structure is increased by 15.3than that before loading.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN822.8
【参考文献】
相关期刊论文 前9条
1 邹雄;童创明;鲍峻松;余定旺;李丹;;基片集成波导与微带线的过渡研究[J];解放军理工大学学报(自然科学版);2013年02期
2 董玉和;樊琼星;刘田达;黄传禄;;横向电感膜片微波矩形波导的传输特性[J];强激光与粒子束;2013年02期
3 赵元英;袁皓;;基片集成波导及其微带过渡的设计[J];舰船电子对抗;2012年04期
4 孙荣辉;高卫东;刘汉;沈旭;;CSRR微带线的等效电路模型研究[J];雷达科学与技术;2012年01期
5 翟阳文;史小卫;赵永久;;波导横向膜片带通滤波器的全波分析和精确设计[J];西安电子科技大学学报;2007年04期
6 刘志宏,王锡良,张晓春;横向单边金属膜片波导带通滤波器的研制[J];微波学报;2004年04期
7 邢锋,刘耀武,宋文淼;基于广义传输线方程的矩形波导等效电路[J];电波科学学报;2004年01期
8 李皓,华光,陈继新,洪伟,崔铁军,吴柯;基片集成波导和微带转换器的理论与实验研究[J];电子学报;2003年S1期
9 王典成;波导缝隙天线阵的宽频带匹配方法[J];现代雷达;1994年03期
相关会议论文 前2条
1 陈蕾;杨永侠;魏峰;田瑾;;基于基片集成波导的高增益平面缝隙天线[A];2009年全国微波毫米波会议论文集(上册)[C];2009年
2 邓磊;唐高弟;;基片集成波导传输特性分析与应用仿真[A];第二届全国信息与电子工程学术交流会暨第十三届四川省电子学会曙光分会学术年会论文集[C];2006年
相关博士学位论文 前1条
1 苏明;超宽带槽线天线的理论研究与设计实现[D];北京邮电大学;2011年
相关硕士学位论文 前2条
1 张帆;基片集成波导的特性及应用研究[D];国防科学技术大学;2010年
2 金凤;基于开环谐振器的微带天线和滤波器的研究[D];南京航空航天大学;2010年
,本文编号:2255668
本文链接:https://www.wllwen.com/kejilunwen/wltx/2255668.html