基于DBN的移动自组织网络入侵检测技术研究
[Abstract]:Mobile ad hoc networks have been more and more widely used in the field of wireless communication, but their inherent characteristics make them vulnerable to various kinds of intrusion, so it is very valuable to study their security. As an active security protection mechanism, intrusion detection technology is the key to ensure the security of mobile ad hoc networks. Depth learning mainly discusses the modeling and learning problems of multi-layer artificial neural networks, and has been a great success in speech, image recognition and other fields. It provides a new and effective way to solve the complex behavior recognition problem of mobile ad hoc network intrusion detection. In view of the diversity and complexity of security problems in mobile ad hoc networks, this paper proposes an intrusion detection method based on deep belief network (Deep Belief Network,DBN). DBN is a mature deep learning model. The application of DBN in mobile ad hoc network intrusion detection technology can achieve a high detection accuracy. The main work and contributions of this paper are as follows: considering the characteristics and security threats of mobile ad hoc networks, this paper first analyzes the problems faced by the application of intrusion detection technology in mobile ad hoc networks, and several typical intrusion detection algorithms and models. The learning principle of DBN model and the training algorithm of constrained Boltzmann machine are studied, and the feasibility of applying DBN to mobile ad hoc network intrusion detection technology is analyzed. Secondly, this paper designs the architecture of mobile ad hoc network intrusion detection model based on DBN, including the detailed design of wireless packet capture, data preprocessing, model training and intrusion detection module. Some solutions to the problems encountered in DBN model training are given. Finally, the proposed intrusion detection method based on DBN in mobile ad hoc networks is simulated. In view of the denial of service attack in the routing layer of mobile ad hoc networks, black hole nodes and selfish nodes are added to NS2 to simulate the two kinds of network intrusion. The normal network and the network with attack nodes are simulated, the network performance is analyzed, and the network behavior characteristics are extracted. The DBN intrusion detection model is simulated, trained and tested based on MATLAB. The test results verify the feasibility of the proposed mobile ad hoc network intrusion detection method based on DBN, and compared with the traditional BP neural network intrusion detection method, DBN has better intrusion detection performance.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN915.08
【共引文献】
相关期刊论文 前10条
1 陈显涛;金伟祖;于志安;;基于NS3的虚拟网络实验室构建及可视化实现[J];电脑知识与技术;2014年01期
2 杨璐;;ZigBee路由协议算法的研究[J];电子科技;2014年03期
3 陈建建;高莹;;WSN中LEACH和LEACH-C、MTE协议性能比较[J];工业控制计算机;2014年03期
4 王秀玮;刘旭东;;TFRC拥塞控制算法的改进研究[J];德州学院学报;2014年06期
5 王亚;熊焰;龚旭东;陆琦玮;;基于模糊数学的MANET恶意节点识别[J];计算机工程;2014年05期
6 倪梁方;陈建建;;基于NS2的CBRP协议构建与仿真研究[J];安徽工业大学学报(自然科学版);2014年03期
7 刘庆龙;高航;;LEACH协议在矿井环境监测系统中的改进[J];计算机与数字工程;2014年08期
8 朱昶胜;杨青;王杰;冯文芳;;基于城市交通场景的仿真研究[J];计算机仿真;2014年04期
9 王林;申莎莎;;无线传感器网络BMAC协议的研究与改进[J];计算机工程与应用;2014年19期
10 赵西洋;;浅谈视频传输质量的影响因素[J];信息通信;2014年11期
相关硕士学位论文 前10条
1 张艳华;水下传感器网络路由算法的研究与设计[D];中国海洋大学;2010年
2 赵欣;遗传算法及其在路由优化问题中的应用[D];宁波大学;2009年
3 李苗苗;基于无线网络的建筑能耗监测系统研究[D];安徽理工大学;2013年
4 鲁玉定;面向蓝藻监测的无线传感器网络路由协议的研究[D];安徽工程大学;2013年
5 刘周龙;基于船联网的QoS保障技术的研究[D];武汉理工大学;2013年
6 张春晓;基于IEEE 802.22的认知网络接入控制研究[D];北京交通大学;2014年
7 周凯;基于机会转发的Ad hoc网络无干扰多径路由协议研究[D];南京理工大学;2014年
8 石海霞;面向机器人定位的无线传感器网络系统的研究与设计[D];南京理工大学;2013年
9 赵奉安;基于MPLS流量工程的可区分服务故障恢复问题研究[D];东北大学;2011年
10 熊为;基于地理位置预测的Ad Hoc网络洪泛控制路由协议研究[D];东北大学;2013年
,本文编号:2319257
本文链接:https://www.wllwen.com/kejilunwen/wltx/2319257.html