基于统计判决的分类器设计及在雷达目标识别中的应用
[Abstract]:With the rapid development of science and technology and the emergence of large-scale high-dimensional data, pattern classification has been widely paid attention to and applied in more and more fields. On the basis of the latest research results at home and abroad, this paper focuses on multi-class classification and class classification. 1. The second chapter introduces the existing multi-class classifiers and a class of classifiers. 1) the relation between Bayesian classifier, mutual information criterion, mutual information and Bayesian error rate is introduced in turn. From this, the information discriminant analysis based on mutual information criterion (IDA) and other related multi-class classifiers are elicited. 2) for a class of classifiers, two kinds of classifiers, support vector domain description (SVDD) and support vector machine (SVM), are introduced. Finally, several generally accepted performance evaluation indexes of classifier are introduced. 2. In order to solve the problem of high dimensional estimation error in IDA, a multi-class classifier based on linear statistical model and mutual information criterion is proposed in chapter 3. The classifier uses linear statistical model to describe the subspace statistical structure of observed data, uses mutual information criterion to constrain the separability of subspace, and optimizes logarithmic likelihood function and mutual information function by jointly optimizing logarithmic likelihood function and mutual information function. The optimal transformation matrix and noise variance are obtained. The classifier can directly obtain the optimal transformation matrix, which can describe the observation data as accurately as possible while making the subspace strongly separable. Based on synthetic data, the simulation results of (UCI) common data and radar measured data at UCLA Irvine verify the good classification performance and robustness of the classifier. In order to solve the problem of model selection in the existing class of classifiers, we propose an infinite Bayesian class of SVM classifiers in chapter 4. First, the existing SVM is improved by normalized function, and then the improved SVM is expressed by probability model with the help of data enhancement technique, and a Bayesian SVM classifier is obtained. Finally, an infinite Bayesian SVM classifier is obtained by extending the Bayesian class of SVM by using the (DP) infinite mixed expert model of the Dirichlet process. The classifier does not need manual intervention to set parameters, and can automatically adapt to the change of data, and automatically learn model parameters to realize model selection. Synthetic data, UCI common data and radar data show that the classifier has good classification performance.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52
【共引文献】
相关期刊论文 前10条
1 陈玉明;吴克寿;孙金华;;基于知识粒度的异常数据挖掘算法[J];计算机工程与应用;2012年04期
2 唐成龙;邢长征;;基于数据分区和网格的离群点挖掘算法[J];计算机应用;2012年08期
3 陈蓉;李艳萍;;一种基于离群点的聚类迭代检测算法[J];科学技术与工程;2012年35期
4 陈玉明;吴克寿;李向军;;一种基于信息熵的异常数据挖掘算法[J];控制与决策;2013年06期
5 杨福萍;王洪国;董树霞;牛家洋;丁艳辉;;基于聚类划分的两阶段离群点检测算法[J];计算机应用研究;2013年07期
6 李俊;;底层网络潜在危险数据的未激活状态挖掘模型[J];科技通报;2015年03期
7 邹劲松;唐旭;;基于粗糙集的图像隐藏信息检测改进方法[J];测控技术;2015年04期
8 程超;张汉敬;景志敏;陈明;矫磊;杨立新;;基于离群点算法和用电信息采集系统的反窃电研究[J];电力系统保护与控制;2015年17期
9 莫倩;杨珂;;网络水军识别研究[J];软件学报;2014年07期
10 陈颖悦;陈玉明;;基于信息熵与蚁群优化的属性约简算法[J];小型微型计算机系统;2015年03期
相关硕士学位论文 前10条
1 李爱春;Web挖掘在检测网络广告欺诈行为中的研究与应用[D];广东工业大学;2011年
2 吴国洋;GML时空离群点挖掘技术研究[D];江西理工大学;2011年
3 孙晓博;基于粗糙集理论的聚类算法研究[D];湖南农业大学;2011年
4 杨金伟;基于距离和信息熵的不确定异常点检测研究[D];云南大学;2011年
5 路亮;基于高维空间目标类几何覆盖模型的一类分类器研究[D];燕山大学;2010年
6 张远方;基于密度的局部离群点挖掘算法研究[D];广西大学;2011年
7 叶振春;实兵对抗演习评估系统中数据清理方法研究[D];解放军信息工程大学;2011年
8 洪弘;数据挖掘技术在中药水提液膜分离中的应用研究[D];南京中医药大学;2012年
9 甘桔;基于d-近邻聚类的证券时间序列奇异点研究[D];昆明理工大学;2012年
10 高祖康;基于数据挖掘的商业银行贷款信用评级[D];南京理工大学;2013年
,本文编号:2340406
本文链接:https://www.wllwen.com/kejilunwen/wltx/2340406.html