基于区域划分的极化SAR图像分类方法研究
[Abstract]:Polarimetric synthetic Aperture Radar (Polarimetric Synthetic Aperture Radar,POLSAR) polarization has attracted much attention due to its ability to obtain data from multiple polarimetric channels, which is more abundant than that of ordinary SAR. Polarized SAR has important prospects in both military and civil fields. The identification of targets by polarized SAR can effectively help the troops to focus on the important positions of the enemy in the war. Moreover, polarized SAR data provide data basis for geological hazard detection and assessment, sea ice thickness detection, forest fire detection and so on. At present, the research on the application of polarized SAR is a hot spot. It is of great significance to make full use of polarized SAR data to obtain information. As an important part of polarimetric SAR image interpretation, polarimetric SAR image classification has also been paid attention to in the field of international remote sensing, and has become an important research direction. 1. A polarimetric SAR image classification method based on nearest neighbor propagation clustering and regional growth is proposed in this paper. The algorithm is mainly based on feature extraction and watershed algorithm to get the results of region over-segmentation, and then the region based K-means algorithm is used to divide the initial region to reduce the number of over-segmented regions. Then the region based nearest neighbor propagation clustering is used to classify the image, and the spatial correlation of the image is fully considered, and the region growth method is used to improve the classification accuracy. Finally, the classification results are obtained by the Wishart classification of the boundary points. By using the homogeneous region obtained by over-segmentation as the classification unit, the effect of speckle in polarimetric data is effectively reduced and the classification accuracy is improved by 2.2. In this paper, an improved watershed based region division method is proposed. The over-segmented region obtained from the watershed is taken as the analysis unit, the spatial information of the region is fully utilized, the adjacent information of each region is obtained, and the combined evaluation value of the adjacent region is calculated by combining with the edge punishment. Merging each other is the most suitable adjacent region for merging, and obtains the result of regional division, which greatly reduces the number of over-segmented regions and effectively combines the adjacent regions with the same features in homogeneous regions. And the edge of the region remains good. 3. In this paper, an unsupervised polarimetric SAR image classification method based on region partition is proposed. Through a new method of polarization feature extraction and edge strength calculation, the watershed algorithm is used to obtain the over-segmentation results, and then the improved watershed based region partition method is used to divide the over-segmented small area into larger regions. Finally, the region based nearest neighbor propagation clustering and a Wishart classifier considering spatial correlation are used to classify, and the final classification results are obtained. The classification method can get better classification results.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52
【相似文献】
相关期刊论文 前10条
1 杜玫芳;;数字图书馆中图像分类技术研究[J];现代计算机(专业版);2008年01期
2 周晓光;匡纲要;万建伟;;极化SAR图像分类综述[J];信号处理;2008年05期
3 秦磊;高文;;基于内容相关性的场景图像分类方法[J];计算机研究与发展;2009年07期
4 杨怿菲;;一种基于图像特征的图像分类方法[J];现代电子技术;2009年14期
5 毕萍;;图像分类方法的对比研究[J];现代电子技术;2009年18期
6 孟海东;郝永宽;王淑玲;;聚类分析在非监督图像分类中的应用研究[J];计算机与现代化;2009年10期
7 姚晓昆;邱桃荣;葛寒娟;刘清;王剑;;基于多层次相容粒度的图像分类[J];河北师范大学学报(自然科学版);2010年01期
8 郭立君;赵杰煜;史忠植;;生成模型与判别方法相融合的图像分类方法[J];电子学报;2010年05期
9 黄涛;陈三风;;人工场景图像分类技术研究[J];深圳信息职业技术学院学报;2010年02期
10 张杰;郭小川;金城;陆伟;;基于特征互补率矩阵的图像分类方法[J];计算机工程;2011年04期
相关会议论文 前10条
1 郑海红;曾平;;一种基于图像分类的逆半调算法[A];’2004计算机应用技术交流会议论文集[C];2004年
2 文振q;欧阳杰;朱为总;;基于语义特征与支持向量机的图像分类[A];中国电子学会第十六届信息论学术年会论文集[C];2009年
3 王海峰;管亮;;基于颜色特征的图像分类技术在油品分析中的应用[A];中国仪器仪表学会第六届青年学术会议论文集[C];2004年
4 陈思坤;吴洪;;基于图分块并利用空间金字塔的医学图像分类[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
5 张淑雅;赵晓宇;赵一鸣;李均利;;基于SVM的图像分类[A];第十三届全国图象图形学学术会议论文集[C];2006年
6 李博;韩萍;;基于压缩感知和SVM的极化SAR图像分类[A];第二十七届中国(天津)2013IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2013年
7 朱松豪;胡娟娟;孙伟;;基于非欧空间高阶统计的图像分类方法[A];第25届中国控制与决策会议论文集[C];2013年
8 潘海为;李建中;张炜;;基于像素聚类的脑部医学图像分类[A];第二十届全国数据库学术会议论文集(研究报告篇)[C];2003年
9 吴霜;张一飞;修非;王大玲;鲍玉斌;于戈;;基于兴趣点特征提取的医学图像分类[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 武进;尹恺;王长明;张家才;;SVDM在蔬菜病害图像分类中的应用[A];图像图形技术与应用进展——第三届图像图形技术与应用学术会议论文集[C];2008年
,本文编号:2381458
本文链接:https://www.wllwen.com/kejilunwen/wltx/2381458.html