人体通信在多节点生理信号采集传输系统中的应用研究
[Abstract]:As wearable / implantable medical equipment information services become more and more practical, Wireless body-area network (Wireless Body Area Network WBAN) technology is widely used in information exchange between medical sensors at the proximal end of human body. WBAN continuously collects important physiological signals of human body, such as blood glucose, through intelligent sensor nodes attached to the proximal end of human body. Blood pressure and ECG were monitored in real time. Low power consumption, low radiation and high transmission efficiency have become important indicators of bulk area network transmission media. However, wireless radio frequency communication technology, including Bluetooth and Zigbee, not only has high power consumption, but also has the problems of electromagnetic interference and network security, which makes it not the best choice for wireless body area network applications. Current-coupled human communication (Intra-Body Communication IBC) uses human body as channel to share information between human proximal devices. Because the process frequency is very low and it is not affected by the surrounding environment, it overcomes the shortcomings of the wireless radio frequency communication technology, and has a wide application prospect in wireless body area network. This paper provides a feasible scheme for studying the application of current-coupled human communication in body-area network: analyzing the communication requirements and characteristics of multi-node physiological signal acquisition and transmission system, and studying the transmission characteristics of human body channel. The hardware characteristics of the transceiver are designed. Based on the existing MAC protocol, a multi-node physiological signal acquisition and transmission system is constructed in the body area network, and its performance is analyzed in a specific application scenario. Firstly, the characteristics and applications of wireless body area network, network topology, physical layer and MAC protocol standard, and the working mode of IEEE802.15.6 are analyzed. It provides a theoretical basis for the research of multi-node system. Secondly, the human forearm experiment is carried out in the range of 10k~500kHz frequency, and the channel attenuation characteristics and corresponding equalization measures are obtained, and the simulation model of human communication system is constructed. The error rate and constellation of human channel model before and after equalization under different modulation modes are analyzed and the modulation mode suitable for human communication is obtained. Thirdly, according to the characteristics of the equalizer model, the human communication transceiver is improved and the system nodes are designed based on the human channel simulation model. The basic functions of the node include: the transmission of data, the collection, storage and display of physiological signals. In order to solve the problem of power frequency interference and common ground, the circuit is supplied by dry battery. Finally, a multi-node physiological signal acquisition and transmission system is constructed, and the performance of the MAC protocol in a specific scenario is studied by combining the parameters of the human body channel and the hardware index of the system node. To sum up, the research on the characteristics of current-coupled human communication channel, the corresponding equalization measures and the hardware parameters of the node device provides the basis for the choice of modulation mode and communication frequency band of multi-node system. Low power consumption, low radiation and high security reflect the significant advantages of current-coupled human communication, and provide a useful exploration and attempt for the theoretical research and technical application of human body communication technology in multi-node physiological signal acquisition and transmission system.
【学位授予单位】:福州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN92
【相似文献】
相关期刊论文 前10条
1 敖强;;电生理信号的计算机分析[J];计算机应用研究;1984年01期
2 孙卫新;;心脏生理信号的计算机分析[J];国外医学(生物医学工程分册);1987年03期
3 李恬鉴,柳英芝;一类生理信号的采集、建模和辨识[J];控制理论与应用;1992年01期
4 郝兴伟,周卫东;生理信号计算机分析与处理的研究[J];计算机研究与发展;1997年S1期
5 李晓媛;李忠文;吕文杰;;无线生理信号监测系统的开发设计[J];郑州大学学报(工学版);2012年04期
6 陈波;刘冬梅;陈薇;;基于插值的准周期电生理信号样本构建的研究[J];电子测量与仪器学报;2013年12期
7 杨洁秋;王慧艳;;利用家用录像机记录生理信号[J];国外医学.生物医学工程分册;1991年05期
8 杨小冬;何爱军;周勇;宁新宝;;复杂生理信号的多重分形质量指数谱分析[J];科学通报;2010年19期
9 苏逸飞;张永魁;;用于情绪识别的无线生理信号采集传输系统[J];电气电子教学学报;2009年05期
10 林冈;;用于生理信号的廉价多通道前置放大器[J];国外医学.生物医学工程分册;1988年02期
相关会议论文 前3条
1 李伟博;吴效明;;基于EZ-USB FX2的生理信号采集接口技术[A];中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集[C];2010年
2 李国丽;史利杰;胡存刚;张萍;詹月红;;基于LabVIEW的生理信号处理研究[A];计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(下册)[C];2006年
3 平安;王志良;;基于生理信号的人机情感交互系统应用研究综述[A];2009中国控制与决策会议论文集(3)[C];2009年
相关重要报纸文章 前1条
1 记者 王怡;我研制出人造仿生电子皮肤[N];科技日报;2014年
相关博士学位论文 前6条
1 曾彭;生理信号的多尺度复杂性研究[D];南京大学;2015年
2 程静;基本情感生理信号的非线性特征提取研究[D];西南大学;2015年
3 温万惠;基于生理信号的情感识别方法研究[D];西南大学;2010年
4 黄丹飞;基于生理信号关联分析的可组合多通道监护系统的研究[D];长春理工大学;2011年
5 王娆芬;过程控制操作员生理信号分析及功能状态建模[D];华东理工大学;2012年
6 杨照芳;心跳间期和皮肤电信号中的情感响应模式研究[D];西南大学;2015年
相关硕士学位论文 前10条
1 王翔;防化兵实训中生理信号动态监测[D];江苏大学;2015年
2 何成;基于多生理信号的情绪识别方法研究[D];浙江大学;2016年
3 吴灶全;基于统一平台的系列多参数生理信号监测仪的硬件开发[D];浙江大学;2016年
4 宋宇坤;基于Zigbee技术的生理信号监测系统的设计[D];河南理工大学;2014年
5 李秀翔;人体通信在多节点生理信号采集传输系统中的应用研究[D];福州大学;2014年
6 刘月华;典型生理信号综合测量及情绪识别研究[D];上海交通大学;2011年
7 孙圣;织物化多生理信号检测装置的设计[D];电子科技大学;2013年
8 侯永捷;面向压力评估的多生理信号采集和分析系统设计[D];燕山大学;2013年
9 李亭亭;运动员生理信号的采集和数据分析系统的研究[D];沈阳工业大学;2008年
10 孙洪央;基于多生理信号的压力状态下情绪识别方法研究[D];上海交通大学;2013年
,本文编号:2403627
本文链接:https://www.wllwen.com/kejilunwen/wltx/2403627.html