一种三阶多项式相位信号去噪的字典学习算法
发布时间:2019-02-11 12:14
【摘要】:在加性高斯白噪声的影响下,对于三阶多项式相位信号(CPS),经典的字典学习算法,如K-means Singular Value Decomposition(K-SVD),递归最小二乘字典学习算法(RLS-DLA)和K-means Singular Value Decomposition Denoising(K-SVDD)得到的学习字典,通过稀疏分解,不能有效去除信号的噪声。为此,该文提出了针对CPS去噪的字典学习算法。该算法首先利用RLS-DLA对的字典进行学习;其次采用非线性最小二乘(NLLS)法修改了该算法对字典更新的部分;最后对训练后的字典通过对信号的稀疏表示得到重构信号。对比其它的字典学习算法,该算法的信噪比(SNR)值明显高于其它算法,而均方误差(MSE)显著低于其它算法,具有明显的降噪效果。实验结果表明,采用该算法得到的字典通过稀疏分解,信号的平均信噪比比K-SVD,RLS-DLS和K-SVDD高出9.55 dB,13.94 dB和9.76 dB。
[Abstract]:Under the influence of additive Gao Si white noise, for third-order polynomial phase signal (CPS), classical dictionary learning algorithm, such as K-means Singular Value Decomposition (K-SVD, The learning dictionaries obtained by recursive least square dictionary learning algorithm (RLS-DLA) and K-means Singular Value Decomposition Denoising (K-SVDD) can not effectively remove the noise of signals by sparse decomposition. Therefore, a dictionary learning algorithm for CPS denoising is proposed. The algorithm first uses RLS-DLA to learn the dictionary, then modifies the updating part of the dictionary by using the nonlinear least square (NLLS) method. Finally, the trained dictionary is reconstructed by sparse representation of the signal. Compared with other dictionary learning algorithms, the signal-to-noise ratio (SNR) of this algorithm is significantly higher than that of other algorithms, while the mean square error (MSE) is significantly lower than that of other algorithms. The experimental results show that the average signal-to-noise ratio of the dictionary obtained by this algorithm is 9.55 dB,13.94 dB and 9.76 dB. higher than that of K-SVDN RLS-DLS and K-SVDD by sparse decomposition.
【作者单位】: 重庆大学飞行器测控与通信教育部重点实验室;重庆电子工程职业学院;
【基金】:国家自然科学基金(51377179) 中央高校基本科研业务费(CDJZR12160020) 重庆教委项目(KJ120510)资助课题
【分类号】:TN911.4
本文编号:2419724
[Abstract]:Under the influence of additive Gao Si white noise, for third-order polynomial phase signal (CPS), classical dictionary learning algorithm, such as K-means Singular Value Decomposition (K-SVD, The learning dictionaries obtained by recursive least square dictionary learning algorithm (RLS-DLA) and K-means Singular Value Decomposition Denoising (K-SVDD) can not effectively remove the noise of signals by sparse decomposition. Therefore, a dictionary learning algorithm for CPS denoising is proposed. The algorithm first uses RLS-DLA to learn the dictionary, then modifies the updating part of the dictionary by using the nonlinear least square (NLLS) method. Finally, the trained dictionary is reconstructed by sparse representation of the signal. Compared with other dictionary learning algorithms, the signal-to-noise ratio (SNR) of this algorithm is significantly higher than that of other algorithms, while the mean square error (MSE) is significantly lower than that of other algorithms. The experimental results show that the average signal-to-noise ratio of the dictionary obtained by this algorithm is 9.55 dB,13.94 dB and 9.76 dB. higher than that of K-SVDN RLS-DLS and K-SVDD by sparse decomposition.
【作者单位】: 重庆大学飞行器测控与通信教育部重点实验室;重庆电子工程职业学院;
【基金】:国家自然科学基金(51377179) 中央高校基本科研业务费(CDJZR12160020) 重庆教委项目(KJ120510)资助课题
【分类号】:TN911.4
【共引文献】
相关硕士学位论文 前4条
1 刘钢;基于压缩感知和稀疏表示理论的图像去噪研究[D];电子科技大学;2013年
2 李晶;基于压缩感知的双(多)基地SAR成像技术研究[D];电子科技大学;2013年
3 李娟娟;基于稀疏表示的图像超分辨率重建方法研究[D];合肥工业大学;2013年
4 田霄;基于小波变换的多尺度电能质量信号压缩采样方法研究[D];中南大学;2013年
【相似文献】
相关期刊论文 前10条
1 沈法华;舒志峰;孙东松;王忠纯;薛向辉;陈廷娣;窦贤康;;瑞利散射多普勒激光雷达风场反演方法[J];物理学报;2011年06期
2 高松山;张红宇;;MIMU现场标定方法[J];火力与指挥控制;2009年11期
3 吴让融;;离子选择电极电位的标准加入法的直接计算机解[J];化学传感器;1985年03期
4 李殿军;梁思远;曹建建;;非球面伽利略扩束系统实现激光束空间整形[J];激光技术;2008年04期
5 张春光;张玉钧;韩道文;陈臻懿;刘文清;;用后向散射系数计算颗粒物质量浓度的方法研究[J];大气与环境光学学报;2008年03期
6 ;一般性问题[J];中国无线电电子学文摘;2002年03期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
,本文编号:2419724
本文链接:https://www.wllwen.com/kejilunwen/wltx/2419724.html