当前位置:主页 > 科技论文 > 网络通信论文 >

基于自适应压缩感知的信道估计与窄带干扰检测算法研究

发布时间:2019-02-15 17:52
【摘要】:正交频分复用(OFDM)因为其具有较高的频带利用率、较强的抵抗频率选择性衰落等特点而被广泛应用于目前移动通信领域,成为了第四代通信系统的核心技术之一。然而目前OFDM技术仍旧面临许多技术问题。众所周知,依据奈奎斯特采样定律,对OFDM系统中数字信号问题的处理需要极高的采样率,然而目前的前端模数转换器(ADC)较难满足其要求。因此我们迫切需要寻求一种新的方法用于解决OFDM系统中数字化信号的处理问题。近几年来压缩感知理论为该问题提供了一种有效的解决方案,它可以同时实现信号的采样和压缩,然后通过特定的重构算法从少量的信息中准确地恢复出原始信号,可大大降低了通信系统系统的采样率和硬件成本。首先本文为了改善OFDM通信系统的性能,在深入分析了 OFDM通信系统的信道特征基础上,结合OFDM系统信道估计技术的特点,将经过加窗优化的自适应匹配追踪算法应用到通信系统的信道估计中,抑制了由于信道截断造成的冲击响应泄露现象,有效消除了冲击响应泄露所产生的噪声,保证了信道的稀疏性,并在此基础上进一步构造了基于窗函数的观测矩阵,然后将自适应匹配追踪算法用于信道的恢复中。本文算法可在未知信道稀疏度的条件下,通过自适应步长合理地调整候选集中原子的个数,进而较为精确的估计出信道的冲击响应。仿真结果表明,与目前信道估计算法相比,本文所提算法能够进一步改善信道估计的性能,有较好的实际应用以及推广价值。其次,本文针对目前OFDM系统中窄带干扰检测所存在的问题,在对压缩感知理论及其重构算法深入研究的基础上,利用基于自适应压缩感知理论的自适应匹配追踪算法解决通信系统的窄带干扰检测问题,该方法可在窄带干扰稀疏度未知的情况下,通过选择合适的补偿自动地调整候选集中原子的个数,在低于奈奎斯特采样率下,快速实现单个及多个窄带干扰信号检测。仿真结果表明,与现有的干扰检测算法相比,本文算法能够有效地实现窄带干扰检测且运行速度较快快,有效地改善OFDM通信系统的性能。
[Abstract]:Orthogonal Frequency Division Multiplexing (OFDM) has been widely used in the field of mobile communication due to its high bandwidth efficiency and strong resistance to frequency selective fading. It has become one of the core technologies of the fourth generation communication system. However, OFDM still faces many technical problems. It is well known that according to Nyquist's sampling law, the processing of digital signal in OFDM system requires a very high sampling rate. However, the current front-end analog-to-digital converter (ADC) is difficult to meet its requirements. Therefore, we urgently need to find a new method to solve the problem of digital signal processing in OFDM system. In recent years, the theory of compression perception provides an effective solution to this problem. It can simultaneously sample and compress signals, and then recover the original signal accurately from a small amount of information by a specific reconstruction algorithm. It can greatly reduce the sampling rate and hardware cost of the communication system. Firstly, in order to improve the performance of OFDM communication system, based on the in-depth analysis of the channel characteristics of OFDM communication system, combined with the characteristics of OFDM system channel estimation technology, A windowed adaptive matching tracking algorithm is applied to the channel estimation of communication systems. The leakage of impulse response caused by channel truncation is suppressed and the noise caused by the leakage of impulse response is effectively eliminated. The sparsity of the channel is ensured, and the observation matrix based on the window function is further constructed, and then the adaptive matching tracking algorithm is applied to the channel recovery. Under the condition of unknown channel sparsity, the proposed algorithm can reasonably adjust the number of atoms in the candidate set by adaptive step size, and then estimate the impulse response of the channel accurately. The simulation results show that the proposed algorithm can further improve the performance of channel estimation compared with the current channel estimation algorithm and has good practical application and popularization value. Secondly, aiming at the existing problems of narrowband interference detection in OFDM systems, this paper deeply studies the theory of compression sensing and its reconstruction algorithm. An adaptive matching tracking algorithm based on adaptive compression sensing theory is used to solve the problem of narrowband interference detection in communication systems. This method can be used to detect narrowband interference when the sparse degree of narrowband interference is unknown. By selecting the appropriate compensation to automatically adjust the number of atoms in the candidate set, the detection of single and multiple narrowband interference signals can be realized quickly under the Nyquist sampling rate. The simulation results show that compared with the existing interference detection algorithms, the proposed algorithm can effectively realize narrowband interference detection and run faster, and improve the performance of OFDM communication system effectively.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN929.53

【参考文献】

相关期刊论文 前10条

1 叶新荣;朱卫平;孟庆民;;MIMO-OFDM系统基于压缩感知的稀疏信道估计[J];应用科学学报;2013年03期

2 杨赞;赵辉;赵玉萍;;基于循环平稳性的异构网OFDM系统窄带干扰消除[J];电子与信息学报;2012年09期

3 叶新荣;朱卫平;孟庆民;;基于SAMP重构算法的OFDM系统稀疏信道估计方法[J];信号处理;2012年03期

4 程国兵;肖丽霞;肖悦;李少谦;;一种改进的OFDM/OQAM系统信道估计算法[J];电子与信息学报;2012年02期

5 刘记红;徐少坤;高勋章;黎湘;庄钊文;;压缩感知雷达成像技术综述[J];信号处理;2011年02期

6 何雪云;宋荣方;周克琴;;基于压缩感知的OFDM系统稀疏信道估计新方法研究[J];南京邮电大学学报(自然科学版);2010年02期

7 郭东亮;张铁军;戴宪华;;基于信号延拓的采样信号频谱泄漏抑制[J];仪器仪表学报;2010年03期

8 张先玉;刘郁林;王开;;超宽带通信压缩感知信道估计与信号检测方法[J];西安交通大学学报;2010年02期

9 赵团结;李永善;凌向东;李贺;;OFDM技术及其在短波通信中的应用[J];兵工自动化;2009年10期

10 石光明;刘丹华;高大化;刘哲;林杰;王良君;;压缩感知理论及其研究进展[J];电子学报;2009年05期

相关硕士学位论文 前6条

1 彭钰;OFDM系统中基于压缩感知的稀疏信道估计算法研究[D];南京邮电大学;2013年

2 高睿;基于压缩传感的匹配追踪重建算法研究[D];北京交通大学;2009年

3 闫欢;基于IEEE802.16e标准的OFDM信道估计技术研究与实现[D];西安电子科技大学;2008年

4 黄勇;通信对抗中通信侦察与跳频OFDM抗干扰技术研究[D];西南交通大学;2007年

5 陈明;扩频通信系统窄带干扰陷波抑制技术研究[D];西南交通大学;2006年

6 韩良冬;OFDM无线传输中的相位噪声补偿技术[D];西安电子科技大学;2006年



本文编号:2423584

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2423584.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ffa44***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com