协同导航网络多传感器信息融合技术研究
[Abstract]:With the gradual attention of the world to the ocean problem, the surface high motorized unmanned craft has obtained unprecedented high speed development, and will play an important role in the future naval battle. In order to adapt to the more complex future marine combat environment, the cooperative navigation technology of unmanned craft is facing a great challenge compared with the traditional navigation technology. This subject will start with the multi-sensor information fusion technology in the cooperative navigation network. Firstly, the research status of unmanned craft technology in various countries is briefly introduced, and through the research and analysis on the development of unmanned craft in China, we know that, Although China has made great progress in recent years, there is still a big gap between China and the United States and Israel. As far as the cooperative navigation network of unmanned craft is concerned, the method to shorten the gap is not only to improve the sensor accuracy in the cooperative network, but also to improve the optimal estimation criterion in information fusion. In this paper, the structure, information source and fusion criteria of multi-sensor information fusion in cooperative navigation network are analyzed and compared, and the results show that the fusion criteria for different noise environments and different system equations are different. Secondly, this paper analyzes the sources of information in the UAV cooperative navigation network, and establishes a suitable mathematical model for simulation analysis according to the characteristics of the information. In view of the important position of inertial navigation system in its cooperative navigation network, the principle, modeling and simulation of inertial navigation system are analyzed and introduced in detail in this paper. Through the modeling and simulation of inertial navigation system, GPS global positioning system, DR dead reckoning system and mobile long baseline positioning system, this paper provides a data source for the algorithm realization of information fusion optimal estimation criterion. Finally, the optimal estimation criterion of information fusion in system navigation network is simulated and analyzed. According to the characteristics of the data fusion subsystem, different Kalman filters are designed. When GPS and inertial navigation system are fused, the linear Kalman filter is used as the fusion criterion. The simulation results show that the adaptive Kalman filter can obtain a good filtering effect without a large increase in the computational complexity for the linear integrated navigation system. For GPS and DR information fusion systems, the nonlinear Kalman filter includes extended Kalman filter and unscented Kalman filter. When the external noise is Gao Si white noise, the unscented Kalman filter has a good filtering effect. However, when the statistical characteristics of system noise and measurement noise are not satisfied with Gao Si white noise, the above two nonlinear filters will have large errors and even lead to the divergence of filters. Through the research and simulation analysis of the main technology of information fusion, the positioning accuracy and the quality of navigation information can be greatly improved by using multi-sensor information fusion technology for unmanned craft cooperative navigation network.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U666.1;TP202;TN96
【参考文献】
相关期刊论文 前10条
1 李岳;;分布式融合处理结构研究[J];舰船电子工程;2013年06期
2 张萍萍;孙永侃;李雪飞;;视景仿真环境下基于卡尔曼滤波的运动目标航迹预测方法[J];兵工自动化;2013年05期
3 王琳;;可视化智能无人侦察救援巡逻艇在公安边防中的应用[J];警察技术;2013年03期
4 赵娟妮;;多传感器数据融合技术及其在光伏电站监控系统中的应用[J];科技信息;2013年07期
5 孙世权;高淑萍;梁原;边疆;;基于数据融合技术的多属性群决策方法[J];系统工程与电子技术;2012年10期
6 杨彦涛;李光磊;;卡尔曼滤波技术在潜艇组合导航中的应用研究[J];船电技术;2012年04期
7 庄佳园;万磊;廖煜雷;孙寒冰;;基于电子海图的水面无人艇全局路径规划研究[J];计算机科学;2011年09期
8 廖煜雷;庞永杰;庄佳园;;无人水面艇嵌入式基础运动控制系统研究[J];计算机科学;2010年09期
9 黄惠宁;刘源璋;梁昭阳;;多传感器数据融合技术概述[J];科技信息;2010年15期
10 谭述森;;北斗卫星导航系统的发展与思考[J];宇航学报;2008年02期
相关博士学位论文 前1条
1 赵辉;基于水下航行器导航定位及信息融合技术研究[D];南京理工大学;2007年
相关硕士学位论文 前10条
1 李高飞;基于非线性统计模型分析的机动车定位算法实现研究[D];南京邮电大学;2013年
2 侯平仁;无人多功能海事船自主航行系统研究与设计[D];武汉理工大学;2012年
3 刘光明;无人多功能海事船控制平台设计与通信网络的构建[D];武汉理工大学;2012年
4 赵虹;基于飞机弹射座椅姿态求解算法的仿真研究与实现[D];南京理工大学;2012年
5 王庆旭;三体滑行艇阻力和稳定性研究[D];哈尔滨工程大学;2012年
6 胡文戢;基于IMM算法的组合导航系统故障诊断研究[D];华中科技大学;2011年
7 何超;捷联惯性导航系统MEMS传感器误差补偿[D];哈尔滨工业大学;2010年
8 黄金山;GPS/SINS/SAR组合导航系统信息融合及误差修正技术研究[D];西安电子科技大学;2010年
9 崔璐璐;基于MEMS器件的姿态测量系统研究与实现[D];大连理工大学;2009年
10 穆振兴;无人机姿态测量系统设计实现[D];哈尔滨工业大学;2009年
,本文编号:2426415
本文链接:https://www.wllwen.com/kejilunwen/wltx/2426415.html