当前位置:主页 > 科技论文 > 网络通信论文 >

基于混合模型和水平集的高分辨SAR图像分类

发布时间:2019-05-11 01:22
【摘要】:合成孔径雷达(Synthetic Aperture Radar,SAR)可以全天时和全天候地对地球表面地物成像,而且可以穿透地球的表面。SAR可以获得较高的空间分辨率,因此高分辨SAR图像在军事、农业和医学领域起着越来越重要的作用。但是,高分辨率的SAR图像由于存在比较严重的乘性相干斑噪声,用传统的分类方法对其进行分类,将得不到较好的分类结果。因此,本文提出了能正确描述SAR图像统计特性的基于K-SVD训练字典的混合模型,以及基于混合模型和改进的水平集的SAR图像分类方法,具体的改进思路如下:(1)SAR图像由于存在严重的乘性相干斑噪声,传统的的单模型已不能对高分辨率的SAR图像进行较精确地统计建模。本文提出了一种基于K-SVD算法训练字典的混合模型统计建模方法,此混合模型是基于对数正态分布和威布尔分布两个模型建立的。由于传统的EM算法对SAR图像混合模型的建模过程比较复杂,提出了通过K-SVD算法来训练字典。在本文中,选择基于梅林变换的SKS参数估计方法对对数正态模型、威布尔模型进行参数估计。通过对SAR图像的匀质区域、不匀质区域和极不匀质区域进行混合模型的拟合表明,混合模型能够对各种地物都能进行较好的统计建模。(2)由于基于Gamma统计模型的水平集分类方法不能对高分辨SAR图像进行较高精度的分类,提出了一种基于K-SVD训练字典的混合模型和改进的CV模型水平集的高分辨SAR图像分类方法。在水平集的典型模型Chen-Vase(CV)模型中,假设SAR图像的每个地物区域都具有一致的的强度,实际上SAR图像中存在许多不匀质区域,因此将CV模型用于SAR图像分类存在了一定的局限性。因此,本文提出了在水平集分类方法中,用基于K-SVD训练字典的混合模型来对高分辨率的SAR图像的不同区域进行统计建模。(3)由于边缘信息是SAR图像分类的重要依据,提出了一种将边缘信息和改进的区域信息相结合的高分辨SAR图像水平集分类方法,在区域能量函数中用能较好地对SAR图像进行统计建模的混合模型来代替CV模型中的高斯模型。实验结果表明,本文提出的基于K-SVD算法训练字典的混合模型和改进的水平集分类方法可以对高分辨率SAR图像进行较高精度的分类。
[Abstract]:Synthetic Aperture Radar (Synthetic Aperture Radar,SAR) can image the earth's surface objects all day and 24 hours a day, and can penetrate the earth's surface. Sar can obtain high spatial resolution, so high resolution SAR images are military. Agriculture and medicine are playing an increasingly important role. However, because of the serious multiplicative coherent speckle noise in high resolution SAR images, the traditional classification method will not get good classification results. Therefore, this paper proposes a hybrid model based on K-SVD training dictionary, which can correctly describe the statistical characteristics of SAR images, and a SAR image classification method based on hybrid model and improved level set. The specific improvement ideas are as follows: (1) because of the serious multiplicative coherent speckle noise in SAR images, the traditional single model can no longer accurately model the high resolution SAR images. In this paper, a hybrid model statistical modeling method based on K-SVD algorithm training dictionary is proposed, which is based on two models: lognormal distribution and Weibull distribution. Because the traditional EM algorithm is complex in the modeling process of SAR image hybrid model, a K-SVD algorithm is proposed to train the dictionary. In this paper, the SKS parameter estimation method based on Merlin transform is selected to estimate the parameters of lognormal model and Weibull model. The mixed model fitting of homogeneous region, uneven region and extremely uneven region of SAR image shows that, The hybrid model can carry on the better statistical modeling to all kinds of ground objects. (2) because the level set classification method based on Gamma statistical model can not carry on the high precision classification to the high resolution SAR image, A high resolution SAR image classification method based on K-SVD training dictionary hybrid model and improved SAR model level set is proposed. In the typical model Chen-Vase (CV) model of the level set, it is assumed that each feature region of the SAR image has the same intensity. In fact, there are many uneven regions in the SAR image. Therefore, there are some limitations in the application of CV model to SAR image classification. Therefore, in the level set classification method, a hybrid model based on K-SVD training dictionary is proposed to statistically model the different regions of high resolution SAR images. (3) because edge information is an important basis for SAR image classification, In this paper, a high resolution SAR image level set classification method is proposed, which combines edge information with improved region information. In the regional energy function, a hybrid model which can well model SAR images is used to replace the Gao Si model in CV model. The experimental results show that the hybrid model based on K-SVD algorithm training dictionary and the improved level set classification method can classify high resolution SAR images with high accuracy.
【学位授予单位】:西安电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN957.52

【相似文献】

相关期刊论文 前10条

1 詹勇;杨燕;王红军;;混合模型的微博交叉话题发现[J];计算机科学与探索;2013年08期

2 于林森;张田文;;一种结合位置信息的混合模型图像分割方法[J];信号处理;2007年03期

3 闫宝珠;袁圣付;陆启生;;等面积混合模型与等压混合模型的理论比较[J];国防科技大学学报;2007年06期

4 张大明;符茂胜;郭慧;罗斌;;基于惩罚距离的混合模型分量数自动估计算法[J];华南理工大学学报(自然科学版);2009年10期

5 戴丽丽;宋余庆;陈健美;谢从华;;遗传K-均值初始化的t混合模型医学图像聚类[J];计算机应用研究;2010年08期

6 谢从华;宋余庆;陈健美;常晋义;;医学图像的混合模型成份数估计[J];计算机科学;2010年10期

7 易翔,王蔚然;基于小波域统计混合模型的图像降噪方法[J];电子与信息学报;2005年11期

8 曹玲芝;陈雨;李春文;;直接甲醇燃料电池的混合模型及其仿真分析[J];电子技术应用;2010年03期

9 王立国;张晶;;基于线性光谱混合模型的光谱解混改进模型[J];光电子.激光;2010年08期

10 夏睿;宗成庆;;情感文本分类混合模型及特征扩展策略[J];智能系统学报;2011年06期

相关会议论文 前10条

1 沈乐君;;基于混合模型的多目标实时跟踪算法[A];2013体育计算机应用论文集[C];2013年

2 纪琳;黄震宇;;中频振动混合模型理论的应用局限性分析[A];现代振动与噪声技术(第九卷)[C];2011年

3 汪传建;李晓光;王大玲;于戈;;一种基于混合模型的文本分类器的研究与实现[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年

4 徐斌;马尽文;;一种柯西混合模型上梯度型BYY和谐学习算法[A];第十三届全国信号处理学术年会(CCSP-2007)论文集[C];2007年

5 兰永红;吴敏;佘锦华;;基于二维混合模型的最优重复控制[A];第二十六届中国控制会议论文集[C];2007年

6 张胜利;张沅;;混合模型方法对QTL的检测及定位效果[A];生命科学与生物技术:中国科协第三届青年学术年会论文集[C];1998年

7 马凌;周江;王文鼐;;突发性业务流的Gamma泊松混合模型及排队性能研究[A];中国通信学会第五届学术年会论文集[C];2008年

8 沈文豪;聂大仕;谢菲;;气升式内环流反应器的液相流动混合模型[A];第一届全国化学工程与生物化工年会论文摘要集(上)[C];2004年

9 赵广建;,

本文编号:2474141


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2474141.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dcdc7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com