当前位置:主页 > 科技论文 > 网络通信论文 >

微波输能中Ka波段整流天线的研究与实现

发布时间:2019-06-07 11:10
【摘要】:近年来,随着在全世界范围内人们对能源的需求量与日俱增,传统能源面临枯竭的危机。面对全球性能源危机愈演愈烈,开发与利用空间太阳能得到前所未有的重视,随着空间太阳能卫星这一概念的提出,人类全面开发利用空间太阳能将逐渐成为现实。微波输能技术是太阳能卫星中的关键技术,其主要应用也在于此。此外,微波输能技术在其他领域也获得了广泛应用,如高空飞行器、恶劣环境的电力供应和低功率密度应用等。因此,对微波输能技术的研究己经变得越来越有应用潜力和实际意义。整流天线是微波输能系统中的关键器件,它是由接收天线和整流电路两部分组成。在Ka波段中,35GHz为典型的大气窗口频率,该频率电磁波穿过大气层时衰减较小,表现为较少被反射、吸收和散射,传输效率高。此外,相对于传统微波频段,如S波段、C波段的整流天线,Ka波段整流天线具有明显的体积优势。鉴于以上原因,本文选择35GHz作为整流天线的中心频率。本文的主要工作包括:1.设计并实现了两款Ka波段的微带接收天线,其工作频率均为35GHz。基于微带贴片天线设计原理、T型接头和馈电网络模拟仿真,借助于电磁仿真软件HFSS,阵列天线的设计得以完成并实现。2×2阵列天线测试达到了13.9dB的增益以及1.45GHz的带宽;4×4阵列天线测试达到了19.8dB的增益以及1.85GHz的带宽。2.设计并实现了两款Ka波段的整流电路,其工作频率均为35GHz。基于S参数、谐波平衡、参数优化等模拟仿真,设计并实现了两款高效的整流电路。为了便于整流天线的系统仿真优化,可将接收天线等效成内阻与接收天线输入阻抗相等的功率源,该功率源作为整流电路的信号源。该部分的工作重点在于分析不同频率、不同输入功率时整流电路的转换效率。针对两款整流电路,对相同输入功率以及不同输入功率间的仿真转换效率和实测转换效率进行了比较,并对观察到的现象做了合理分析。对于串联整流电路,在工作频率为35GHz,输入功率为18dBm的条件下实现了55%的最高转换效率;而对于并联整流电路,在工作频率为35GHz,输入功率为18dBm的条件下实现了53%的最高转换效率。
[Abstract]:In recent years, with the increasing demand for energy all over the world, traditional energy is facing the crisis of depletion. In the face of the global energy crisis, the development and utilization of space solar energy has received unprecedented attention. with the introduction of the concept of space solar satellite, the comprehensive development and utilization of space solar energy will gradually become a reality. Microwave energy transfer technology is the key technology of solar satellite, and its main application lies in it. In addition, microwave energy transfer technology has been widely used in other fields, such as high altitude aircraft, power supply in harsh environment and low power density application. Therefore, the study of microwave energy transfer technology has become more and more potential and practical significance. Rectifier antenna is the key device in microwave energy transmission system, which is composed of receiving antenna and rectifier circuit. In Ka band, 35GHz is a typical atmospheric window frequency. When the frequency electromagnetic wave passes through the atmosphere, the attenuation is small, which is less reflected, absorbed and scattered, and the transmission efficiency is high. In addition, compared with the traditional microwave band, such as S band, C band rectifier antenna, Ka band rectifier antenna has obvious volume advantages. In view of the above reasons, this paper chooses 35GHz as the center frequency of rectifier antenna. The main work of this paper includes: 1. Two Ka band microstrip receiving antennas are designed and implemented, both of which operate at 35GHz. Based on the design principle of microstrip patch antenna, T-joint and feed network simulation, with the help of electromagnetic simulation software HFSS, The design of array antenna is completed and realized. 2 脳 2 array antenna test achieves the gain of 13.9dB and the bandwidth of 1.45GHz. The 4 脳 4 array antenna test achieves the gain of 19.8dB and the bandwidth of 1.85GHz. 2. Two Ka band rectifier circuits are designed and implemented, both of which operate at 35GHz. Based on the simulation of S parameters, harmonic balance and parameter optimization, two efficient rectifier circuits are designed and implemented. In order to facilitate the system simulation and optimization of the rectifier antenna, the receiving antenna can be equivalent to the input impedance of the receiving antenna, which can be used as the signal source of the rectifier circuit. The focus of this part is to analyze the conversion efficiency of rectifier circuits at different frequencies and different input power. For the two rectifier circuits, the simulation conversion efficiency and the measured conversion efficiency between the same input power and different input power are compared, and the observed phenomena are analyzed reasonably. For the series rectifier circuit, the maximum conversion efficiency of 55% is realized under the condition that the working frequency is 35GHz and the input power is 18dBm. For parallel rectifier circuits, the maximum conversion efficiency of 53% is realized when the operating frequency is 35GHz and the input power is 18dBm.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN822

【共引文献】

相关期刊论文 前10条

1 姚晓平;;电能无线传输应用方案[J];制造业自动化;2011年24期

2 叶德信;冉立新;;基于人工PML表面的高效微波能量接收[J];空间电子技术;2013年03期

3 王业清;杨雪霞;江超;;整流天线组阵等效模型与实验[J];空间电子技术;2013年03期

4 唐正明;章三妹;;一种低功率微波整流电路的设计方法研究[J];西华师范大学学报(自然科学版);2014年03期

5 高艳艳;杨雪霞;周建永;;新型CPS型低通滤波器在整流天线中的应用[J];无线电工程;2010年09期

6 吕艳青;杨雪霞;周捚;;一种用于微波输能的小型化整流电路[J];应用科学学报;2011年05期

7 张琳;高宝建;伍捍东;任宇辉;;一种小型化高效微波整流天线的设计[J];西北大学学报(自然科学版);2013年02期

8 吴苏敏;叶小龙;申世军;李晓宁;;一种矩形微带整流天线的研究与设计[J];微型机与应用;2013年20期

9 沈龙;杨雪霞;聂美娟;胡越;;一种新型的双频整流电路[J];微波学报;2014年05期

10 商锋;郭根武;;2.45GHz微波整流电路设计[J];西安邮电大学学报;2015年01期

相关硕士学位论文 前10条

1 周雨薇;射频接收整流天线的研究与应用[D];广东工业大学;2011年

2 赵云;基于TR的无线传感器网络节点充电演示平台[D];电子科技大学;2011年

3 朱晓凯;基于WiTricity的WPT的等效电路理论研究[D];南昌大学;2012年

4 吴昊;串联型双输入非接触谐振变换器的研究[D];南京航空航天大学;2012年

5 李奥博;无线能量传输系统中整流技术研究[D];上海交通大学;2012年

6 季帅;基于微带电路的ISM波段整流天线的研究与设计[D];吉林大学;2013年

7 张琳;高效小型化微波整流天线的研究与设计[D];西北大学;2013年

8 耿旭;ISM频段微带整流电路及圆极化接收天线研究[D];电子科技大学;2013年

9 漆世锴;微波输能系统中的整流天线设计与实现[D];河南师范大学;2013年

10 申世军;小功率微波供电系统的研究[D];电子科技大学;2013年



本文编号:2494749

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wltx/2494749.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9ad09***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com