激光雷达中基于组合纹理的低空风切变识别算法
发布时间:2019-08-06 12:20
【摘要】:针对不同的风切变在激光雷达图像上所呈现的不同纹理特性,提出了一种组合局部纹理特征和全局纹理特征的识别方法。先分别从激光雷达风切变图像中提取LBP特征和灰度-梯度共生矩阵特征,LBP特征反应图像的局部纹理,代表风场局部风速的变化,灰度-梯度共生矩阵特征反应图像的全局纹理,代表风场全局的风速变化,再通过典型相关分析对两种特征进行融合,最后采用最近邻分类器对三种风切变进行匹配识别。实验结果表明,该算法对三种低空风切变的平均识别率达到99.02%,与三种单一的纹理特征分类识别相比,分别提高了18.86%,5.88%和7.01%。
[Abstract]:Aiming at the different texture characteristics of different wind shear on lidar images, a recognition method combining local texture features with global texture features is proposed. Firstly, LBP features and gray-gradient symbiosis matrix features are extracted from lidar wind shear images, LBP features reflect the local texture of the image, represent the local wind speed change of the wind field, the gray-gradient symbiosis matrix feature reflects the global texture of the image, and represent the global wind speed change of the wind field. Then the two features are combined by canonical correlation analysis. Finally, the nearest neighbor classifiers are used to match and recognize the three kinds of wind shear. The experimental results show that the average recognition rate of the algorithm for three kinds of low altitude wind shear is 99.02%, which is 18.86%, 5.88% and 7.01% higher than that of the three single texture feature classification.
【作者单位】: 民航气象研究所中国民航大学;智能信号与图像处理天津市重点实验室中国民航大学;
【基金】:国家自然科学基金(No.41075013) 中央高校基金(No.ZXH2010D020,3122013P009) 中国民航大学研究生科技创新基金(No.3122013SY25)资助
【分类号】:TN958.98
[Abstract]:Aiming at the different texture characteristics of different wind shear on lidar images, a recognition method combining local texture features with global texture features is proposed. Firstly, LBP features and gray-gradient symbiosis matrix features are extracted from lidar wind shear images, LBP features reflect the local texture of the image, represent the local wind speed change of the wind field, the gray-gradient symbiosis matrix feature reflects the global texture of the image, and represent the global wind speed change of the wind field. Then the two features are combined by canonical correlation analysis. Finally, the nearest neighbor classifiers are used to match and recognize the three kinds of wind shear. The experimental results show that the average recognition rate of the algorithm for three kinds of low altitude wind shear is 99.02%, which is 18.86%, 5.88% and 7.01% higher than that of the three single texture feature classification.
【作者单位】: 民航气象研究所中国民航大学;智能信号与图像处理天津市重点实验室中国民航大学;
【基金】:国家自然科学基金(No.41075013) 中央高校基金(No.ZXH2010D020,3122013P009) 中国民航大学研究生科技创新基金(No.3122013SY25)资助
【分类号】:TN958.98
【参考文献】
相关期刊论文 前3条
1 王邦新;沈法华;孙东松;钟志庆;夏海云;刘东;周小林;董晶晶;李颖颖;;直接探测多普勒激光雷达的光束扫描和风场测量[J];红外与激光工程;2007年01期
2 夏德深,金盛,王健;基于分数维与灰度梯度共生矩阵的气象云图识别(Ⅱ)——灰度梯度共生矩阵对纹理统计特征的描述[J];南京理工大学学报;1999年04期
3 蒋立辉;高志光;熊兴隆;姚彬;庄子波;;基于激光雷达图像处理的低空风切变类型识别研究[J];红外与激光工程;2012年12期
【共引文献】
相关期刊论文 前10条
1 张育真;汪岳峰;侯军燕;;机载相干激光切变风探测雷达及其光束扫描技术[J];四川兵工学报;2009年02期
2 张韧,王海俊,孙照渤,牛生杰,刘科峰;双光谱卫星云图的模糊推理云分类[J];防灾减灾工程学报;2004年03期
3 吴委员;张华君;;基于自适应共生矩阵选择的目标跟踪方法[J];福建电脑;2012年02期
4 徐江斌;赵健;杨超;吴玲达;;云图数据驱动的三维云景可视化[J];工程图学学报;2010年03期
5 钟志庆;孙东松;王邦新;刘博;周军;;测风激光雷达的软件设计[J];大气与环境光学学报;2008年03期
6 沈法华;孙东松;王忠纯;薛向辉;陈廷娣;窦贤康;;移动式多普勒激光雷达光束扫描及风场反演技术研究[J];光学学报;2012年03期
7 熊江;陈q诹,
本文编号:2523545
本文链接:https://www.wllwen.com/kejilunwen/wltx/2523545.html