计算周期序列k-错线性复杂度的混合遗传算法
发布时间:2021-01-22 05:32
周期序列的线性复杂度及其稳定性是序列密码评价的重要度量指标.k-错线性复杂度是线性复杂度稳定性的一个重要评价指标.然而,目前对于大部分周期序列(除周期为2n、pn、2pn外),尚无有效的算法求解其k-错线性复杂度.因此,本文提出了一种混合的遗传算法来近似计算任意周期序列的k-错线性复杂度.采用轮盘赌、最优保留策略、两点交叉和单点随机变异,并引入自适应算子来调整交叉概率和变异概率,以保证遗传算法的收敛性.通过并行计算适应度函数来提高算法的效率,同时与模拟退火算法相结合,加速算法收敛并避免早熟.结果表明:当k<8且周期小于256时,k-错线性复杂度的实验值仅比精确值高8%.
【文章来源】:上海交通大学学报. 2020,54(06)北大核心
【文章页数】:8 页
【部分图文】:
序列s1的k-错线性复杂度实验值和准确值对比
s2={111001001011110001101100000011010110101 11110110110111111011100110101001011100101011 10001100010001010000001110001101000000101001 1},N=128s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256
s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256对比文献[16]的实验结果,周期为32的二元序列的5-错线性复杂度的实验结果比准确值平均高19.5%.而本文算法可以计算周期为256的二元序列的8-错线性复杂度,其实验值仅比准确值高8%.因此,本文算法不仅使可计算的N、k增加,还提高了算法的准确性和效率.
【参考文献】:
期刊论文
[1]Linear Complexity of Least Significant Bit of Polynomial Quotients[J]. ZHAO Chun’e,MA Wenping,YAN Tongjiang,SUN Yuhua. Chinese Journal of Electronics. 2017(03)
[2]On the Linear Complexity of New Generalized Cyclotomic Binary Sequences of Order Two and Period pqr[J]. Longfei Liu,Xiaoyuan Yang,Xiaoni Du,Bin Wei. Tsinghua Science and Technology. 2016(03)
[3]Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Zhihua NIU,Zhixiong CHEN,Xiaoni DU. Science China(Information Sciences). 2016(03)
[4]On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. CHEN ZhiXiong,NIU ZhiHua,WU ChenHuang. Science China(Information Sciences). 2015(09)
[5]On the Error Linear Complexity Spectrum of Binary Sequences with Period of Power of Two[J]. CHANG Zuling,KE Pinhui. Chinese Journal of Electronics. 2015(02)
本文编号:2992656
【文章来源】:上海交通大学学报. 2020,54(06)北大核心
【文章页数】:8 页
【部分图文】:
序列s1的k-错线性复杂度实验值和准确值对比
s2={111001001011110001101100000011010110101 11110110110111111011100110101001011100101011 10001100010001010000001110001101000000101001 1},N=128s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256
s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256对比文献[16]的实验结果,周期为32的二元序列的5-错线性复杂度的实验结果比准确值平均高19.5%.而本文算法可以计算周期为256的二元序列的8-错线性复杂度,其实验值仅比准确值高8%.因此,本文算法不仅使可计算的N、k增加,还提高了算法的准确性和效率.
【参考文献】:
期刊论文
[1]Linear Complexity of Least Significant Bit of Polynomial Quotients[J]. ZHAO Chun’e,MA Wenping,YAN Tongjiang,SUN Yuhua. Chinese Journal of Electronics. 2017(03)
[2]On the Linear Complexity of New Generalized Cyclotomic Binary Sequences of Order Two and Period pqr[J]. Longfei Liu,Xiaoyuan Yang,Xiaoni Du,Bin Wei. Tsinghua Science and Technology. 2016(03)
[3]Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Zhihua NIU,Zhixiong CHEN,Xiaoni DU. Science China(Information Sciences). 2016(03)
[4]On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. CHEN ZhiXiong,NIU ZhiHua,WU ChenHuang. Science China(Information Sciences). 2015(09)
[5]On the Error Linear Complexity Spectrum of Binary Sequences with Period of Power of Two[J]. CHANG Zuling,KE Pinhui. Chinese Journal of Electronics. 2015(02)
本文编号:2992656
本文链接:https://www.wllwen.com/kejilunwen/wltx/2992656.html