基于RLWE的并行全同态加密算法研究
发布时间:2017-05-20 12:24
本文关键词:基于RLWE的并行全同态加密算法研究,由笔耕文化传播整理发布。
【摘要】:全同态加密(FHE)是一类具有代数同态属性的加密方法,允许基于密文进行任意计算,其计算结果与对应明文进行相应计算后的加密结果等价。这一良好性质使其在安全多方计算、云计算、数字水印、生物特征识别等领域具有极其重要的应用价值。尽管全同态加密体制效率不断提高,但依旧不同程度存在计算量高、密钥尺寸大等问题,导致其效率低下。环上错误学习问题(RLWE)是一类安全性高的新型困难问题,其涉及的多项式模运算计算速度慢,严重制约基于该问题设计的全同态加密方案的性能;外包计算作为一类重要安全多方计算问题,FHE可为其实现提供底层支持,其性能低下是亟需解决的关键问题。鉴于此,本文以全同态加密为研究对象,从高性能实现和基础应用两方面做了如下探索工作: (1)从基础构造方法、高性能实现和基础应用三方面对全同态加密研究进行了简要概述,指出了后续研究方向。 (2)引入中国剩余定理优化RLWE中的多项式模运算,将高次多项式模分解为多个低次多项式模,设计了RLWE的并行加速方案。通过合理地选取安全参数达到了安全性与性能的折中; (3)将上述方案应用于全同态加密中,设计了基于RLWE的并行全同态加密算法,在MPI集群上实现了该算法,实验结果表明该算法可行且具有较高的性能; (4)以随机归约和全同态加密为基础,设计了基于FHE的安全外包计算方案,兼顾安全性的同时,有效降低了方案的时间复杂度;设计了基于MapReduce模型的安全外包计算方案,Hadoop平台实现的结果表明该方案具有较高的运行效率。 本文设计的RLWE的并行加速方案具有一般适用性,适用于基于RLWE问题设计的密码学方案;设计的并行全同态加密算法和安全外包计算方案分别从高性能实现和基础应用角度对全同态加密进行了研究探索,为全同态加密算法高效实现、基础应用的效率提升提供了解决思路。实验结果表明,设计的方案具有较高的运行效率,能满足应用需求。
【关键词】:环上错误学习问题 中国剩余定理 并行计算 全同态加密 外包计算
【学位授予单位】:云南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TN918.4
【目录】:
- 摘要3-4
- Abstract4-6
- 符号说明6-7
- 目录7-9
- 第一章 绪论9-12
- 1.1 选题背景、研究目标与意义9-10
- 1.2 研究内容、创新与特色10-11
- 1.3 论文组织结构11-12
- 第二章 理论基础12-19
- 2.1 代数学基础12-13
- 2.1.1 代数系统12-13
- 2.2 密码学基础13-14
- 2.2.1 LWE问题14
- 2.2.2 RLWE问题14
- 2.2.3 近似最大公约数问题14
- 2.3 全同态加密基础14-16
- 2.3.1 同态加密14-15
- 2.3.2 全同态加密15
- 2.3.3 部分同态加密方案15
- 2.3.4 基于RLWE的部分同态加密方案15-16
- 2.4 全同态加密关键技术16-19
- 2.4.1 密钥转换16-18
- 2.4.2 模转换18-19
- 第三章 全同态加密研究19-32
- 3.0 本章摘要19
- 3.1 引言19-20
- 3.2 全同态加密研究现状20-24
- 3.3 五种全同态加密方案24-31
- 3.3.1 Gentry-Halevi基于理想格的全同态加密方案24-25
- 3.3.2 基于整数的全同态加密方案—DGHV方案25-26
- 3.3.3 DGHV优化方案26-28
- 3.3.4 基于RLWE的全同态加密方案28
- 3.3.5 基于NTRU的全同态加密方案28-30
- 3.3.6 几种方案比较30-31
- 3.4 结束语31-32
- 第四章 RLWE的并行加速方案研究及其在全同态加密中的应用32-49
- 4.0 本章摘要32
- 4.1 引言32-34
- 4.2 RLWE的并行加速方案34-39
- 4.2.1 RLWE的并行加速方案设计36-37
- 4.2.2 安全性与效率分析37-39
- 4.3 RLWE的并行加速方案在全同态加密中的应用39-44
- 4.3.1 基于RLWE的全同态加密串行算法39-41
- 4.3.2 基于RLWE的并行全同态加密算法41-44
- 4.4 基于RLWE的并行全同态加密算法实现44-48
- 4.4.1 实验过程44-47
- 4.4.2 实验结果分析47-48
- 4.5 本章总结48-49
- 第五章 基于MapReduce模型的安全外包计算方案设计与实现49-60
- 5.0 本章摘要49
- 5.1 引言49-50
- 5.2 基于FHE的安全外包计算方案50-53
- 5.2.1 代数基础50
- 5.2.2 随机归约算法原理50-51
- 5.2.3 安全性分析51
- 5.2.4 基于FHE的安全外包计算方案设计51-53
- 5.2.5 安全性分析53
- 5.3 基于MapReduce模型的安全外包计算方案53-56
- 5.3.1 基于MapReduce模型的外包计算模型53-55
- 5.3.2 安全性与效率分析55-56
- 5.4 基于MapReduce模型的安全外包计算方案实现56-59
- 5.4.1 实验平台配置及其实验过程56-59
- 5.4.2 实验结果分析59
- 5.5 本章总结59-60
- 结束语60-61
- 附录1:基于RLWE的并行全同态加密算法实现结果61-66
- 附录2:基于RLWE的全同态加密算法实现66-72
- 附录3:基于MapReduce模型的安全外包计算方案实现72-78
- 参考文献78-83
- 致谢83
【参考文献】
中国期刊全文数据库 前10条
1 光焱;顾纯祥;祝跃飞;郑永辉;费金龙;;一种基于LWE问题的无证书全同态加密体制[J];电子与信息学报;2013年04期
2 郭本俊;王鹏;陈高云;黄健;;基于MPI的云计算模型[J];计算机工程;2009年24期
3 汤殿华;祝世雄;曹云飞;;一个较快速的整数上的全同态加密方案[J];计算机工程与应用;2012年28期
4 林如磊;王箭;杜贺;;整数上的全同态加密方案的改进[J];计算机应用研究;2013年05期
5 徐鹏;刘超;斯雪明;;基于整数多项式环的全同态加密算法[J];计算机工程;2012年24期
6 古春生;景征骏;于志敏;;破解较快速的整数上的全同态加密方案[J];计算机工程与应用;2013年21期
7 罗炳聪;柳青;马远;汤瑜;;具有较短公钥的批处理整数上的全同态加密[J];计算机应用研究;2014年04期
8 陈智罡;王箭;宋新霞;;全同态加密研究[J];计算机应用研究;2014年06期
9 刘明洁;王安;;全同态加密研究动态及其应用概述[J];计算机研究与发展;2014年12期
10 汤殿华;祝世雄;王林;杨浩淼;范佳;;基于RLWE的全同态加密方案[J];通信学报;2014年01期
本文关键词:基于RLWE的并行全同态加密算法研究,,由笔耕文化传播整理发布。
本文编号:381632
本文链接:https://www.wllwen.com/kejilunwen/wltx/381632.html