强场下氢分子高次谐波发射及孤立阿秒脉冲的产生
发布时间:2022-11-03 22:22
随着激光技术的日益发展与进步,科学家们对原子分子动力学有了进一步的研究;尤其是阿秒脉冲的产生对人们认识微观世界和探测电子动力学过程起到非常重要的作用。我们知道目前高次谐波是产生阿秒脉冲的重要途径。高次谐波谱有如下几个特点:首先,在较低阶次,谐波呈现快速下降的趋势;接着,出现一个平台区,即谐波的发射效率不随阶次的变化而变化;最后,谐波在平台区某一阶次附近发射效率急剧下降,称为谐波的截止。为了能够更好的分析解释谐波的产生机制,在1993年Corkum提出了半经典三步模型;第一步,处于基态的电子,通过隧穿或者多光子电离进入到激发态,即电离过程;第二步,此时被电离的电子可以看作准自由电子,只受到激光场的作用并在场中被加速,即电子加速过程;第三步,当激光场变换为反向时,电子减速,然后电子反向继续加速,最终返回母核并复合,此时有高能光子释放出来,即高次谐波发射。目前为了获得孤立阿秒脉冲人们在理论和实验上提出了不同的方案,如多色场调控方案和非均匀场方案等。本文分别研究了在多色场和非均匀场作用下氢分子高次谐波发射及孤立阿秒脉冲的产生。本文的主要工作包括以下几个部分:第一,我们理论上研究了体系为一维核运...
【文章页数】:70 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第一章 绪论
1.1 激光技术的发展史
1.2 强激光场中原子的电离机制
1.2.1 多光子电离(MPI)
1.2.2 阈上电离(ATI)
1.2.3 隧穿电离(TI)
1.2.4 越垒电离(OBTI)
1.3 高次谐波发射
1.3.1 高次谐波发射的研究背景
1.3.2 高次谐波发射机制
1.3.3 高次谐波研究的发展及意义
1.4 阿秒激光脉冲的发展及其应用
1.5 本论文的内容
第二章 理论模型和计算方法
2.1 激光场形式与原子模型势
2.1.1 激光场形式
2.1.2 原子模型势
2.2 原子分子与激光相互作用的含时薛定谔方程
2.2.1 单电子原子的含时薛定谔方程
2.2.2 双原子分子的含时薛定谔方程
2.3 虚时演化求解初始波函数
2.4 分裂算符法解含时薛定谔方程
2.5 小波变换
第三章 三色场作用下氢分子高次谐波的发射及孤立阿秒脉冲的产生
3.1 引言
3.2 氢分子一维理论计算模型
3.3 三色场下氢分子量子轨道控制及孤立阿秒脉冲产生
3.4 总结
第四章 非均匀场下氢分子高次谐波发射
4.1 引言
4.2 非均匀场作用下氢分子高次谐波产生
4.3 总结
第五章 总结与展望
5.1 总结
5.2 展望
参考文献
在学期间所取得的科研成果
致谢
【参考文献】:
期刊论文
[1]Selection of quantum path in high-order harmonics and isolated sub-100 attosecond generation in few-cycle spatially inhomogeneous laser fields[J]. 葛鑫磊,杜慧,王群,郭静,刘学深. Chinese Physics B. 2015(02)
本文编号:3700734
【文章页数】:70 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第一章 绪论
1.1 激光技术的发展史
1.2 强激光场中原子的电离机制
1.2.1 多光子电离(MPI)
1.2.2 阈上电离(ATI)
1.2.3 隧穿电离(TI)
1.2.4 越垒电离(OBTI)
1.3 高次谐波发射
1.3.1 高次谐波发射的研究背景
1.3.2 高次谐波发射机制
1.3.3 高次谐波研究的发展及意义
1.4 阿秒激光脉冲的发展及其应用
1.5 本论文的内容
第二章 理论模型和计算方法
2.1 激光场形式与原子模型势
2.1.1 激光场形式
2.1.2 原子模型势
2.2 原子分子与激光相互作用的含时薛定谔方程
2.2.1 单电子原子的含时薛定谔方程
2.2.2 双原子分子的含时薛定谔方程
2.3 虚时演化求解初始波函数
2.4 分裂算符法解含时薛定谔方程
2.5 小波变换
第三章 三色场作用下氢分子高次谐波的发射及孤立阿秒脉冲的产生
3.1 引言
3.2 氢分子一维理论计算模型
3.3 三色场下氢分子量子轨道控制及孤立阿秒脉冲产生
3.4 总结
第四章 非均匀场下氢分子高次谐波发射
4.1 引言
4.2 非均匀场作用下氢分子高次谐波产生
4.3 总结
第五章 总结与展望
5.1 总结
5.2 展望
参考文献
在学期间所取得的科研成果
致谢
【参考文献】:
期刊论文
[1]Selection of quantum path in high-order harmonics and isolated sub-100 attosecond generation in few-cycle spatially inhomogeneous laser fields[J]. 葛鑫磊,杜慧,王群,郭静,刘学深. Chinese Physics B. 2015(02)
本文编号:3700734
本文链接:https://www.wllwen.com/kejilunwen/wulilw/3700734.html