当前位置:主页 > 科技论文 > 信息工程论文 >

基于索引调制的宽带MIMO-OFDM无线传输技术研究

发布时间:2018-01-30 01:34

  本文关键词: 正交频分复用 多输入多输出 索引调制 峰均比 带外辐射 出处:《电子科技大学》2016年硕士论文 论文类型:学位论文


【摘要】:基于索引调制的OFDM(Orthogonal Frequency Division Multiplexing with Index Modulation,OFDM-IM)技术是近年来提出的一种新型多载波方案,它具备频谱效率高、抗多径效应强等特性,并且相较于传统的OFDM,可以在抗载波间干扰方面拥有更突出的优势,因此该技术也成为多载波无线通信的研究方向之一。为了进一步提高系统的频谱利用率和系统容量,本文考虑将OFDM-IM技术与多输入多输出(Multiple Input Multiple Output,MIMO)技术相结合,研究MIMO-OFDM-IM系统的性能。本文主要研究MIMO-OFDM-IM接收机的优化与设计,分别从性能最优和复杂度最优方向提出几种检测算法。另外,针对MIMO-OFDM-IM信号的峰均比(Peak-to-Average Power Ratio,PAPR)高和带外辐射大的缺陷进行优化,并提出次优接收机设计方案。本文的具体工作安排如下:第一章先介绍了基于索引调制的OFDM技术和MIMO技术的研究现状,然后将OFDM-IM技术与OFDM比较,阐述了OFDM-IM的优缺点。第二章主要从性能最优方向提出了针对MIMO-OFDM-IM的三种检测算法,分别是基于距离的检测(Distance-Based ordered Detection,DBD)算法、引入门限判决的DBD改进算法和基于排序的检测算法,并对算法性能进行了仿真。具体地,先总结了MIMO-OFDM-IM的现有的检测算法,分别是最大似然(Maximum Likelihood,ML)检测和对数似然比(Log-likelihood Ratio,LLR)检测,然后针对ML算法复杂度极高、LLR算法性能较差的不足,提出了三种性能较好的检测算法。与LLR算法相比,DBD对块做MMSE均衡,具有更好的BER性能。改进的DBD算法通过引入了一个判决门限,极大程度地降低复杂度。而基于排序的检测算法对载波组合进行了排序,因此能在实现近ML检测性能的同时,大幅度降低了算法复杂度。第三章首先从复杂度最优的角度提出了三种低复杂度接收机,分别是能量检测算法、局部搜索算法和迭代Tabu搜索算法,然后进行了算法性能的仿真和复杂度的分析。能量检测具有最低的复杂度,但检测性能较差。局部搜索算法先通过能量检测得到初始解,然后不断迭代初始解的邻域空间,直至满足终止条件,得到最终的输出。迭代Tabu算法通过修正每一次搜索的邻域解空间,避免了局部搜索算法存在的陷入局部最优解的死循环问题,因此提高了搜索效率。另外,合理地设置终止条件,可以在算法性能和复杂度之间取得平衡。第四章针对MIMO-OFDM-IM信号存在峰均比高和带外辐射大的缺陷,对信号进行PAPR抑制和旁瓣能量抑制,并在接收端对信号进行恢复。第五章总结全文,并指出未来的可能研究方向。
[Abstract]:OFDM based on Index Modulation. Orthogonal Frequency Division Multiplexing with Index Modulation. OFDM-IMC is a new multi-carrier scheme proposed in recent years. It has the characteristics of high spectral efficiency and strong anti-multipath effect, and compared with the traditional OFDM. This technology has become one of the research directions of multi-carrier wireless communication. In order to further improve the system spectrum efficiency and system capacity. This paper considers the combination of OFDM-IM technology and multiple Input Multiple output Mimo technology. The performance of MIMO-OFDM-IM system is studied. The optimization and design of MIMO-OFDM-IM receiver are studied in this paper. Several detection algorithms are proposed from the direction of optimal performance and optimal complexity, respectively. The peak average of MIMO-OFDM-IM signal is higher than that of Peak-to-average Power Power PAPR, and the outband radiation is higher than that of peak-to-average Power PAPR. The main work of this paper is as follows: chapter 1 introduces the research status of OFDM technology and MIMO technology based on index modulation. Then compare OFDM-IM technology with OFDM. The advantages and disadvantages of OFDM-IM are expounded. In chapter 2, three detection algorithms for MIMO-OFDM-IM are proposed from the aspect of performance optimization. Distance-Based ordered Detection (DBD) algorithm is used to detect distance. The improved threshold decision DBD algorithm and the sorting based detection algorithm are introduced, and the performance of the algorithm is simulated. Specifically, the existing detection algorithms of MIMO-OFDM-IM are summarized. Maximum maximum Likelihoodo (MLL) and Log-likelihood Ratio- LLR (Log-likelihood Ratio- LLR) were detected, respectively. Then aiming at the poor performance of ML algorithm with extremely high complexity, three detection algorithms with good performance are proposed. Compared with LLR algorithm, MMSE equalization of block pairs is done. The improved DBD algorithm greatly reduces the complexity by introducing a decision threshold, while the sorting based detection algorithm sorts the carrier combinations. Therefore, the performance of near-ML detection can be achieved while greatly reducing the complexity of the algorithm. In Chapter 3, three low-complexity receivers are proposed from the point of view of optimal complexity, which are energy detection algorithms. Local search algorithm and iterative Tabu search algorithm, then the algorithm performance simulation and complexity analysis. Energy detection has the lowest complexity. But the detection performance is poor. The local search algorithm first obtains the initial solution by energy detection, and then iterates the neighborhood space of the initial solution until the termination condition is satisfied. By modifying the neighborhood solution space of each search, the iterative Tabu algorithm avoids the dead cycle problem in which the local search algorithm falls into the local optimal solution. Therefore, the search efficiency is improved. In addition, the termination condition is set reasonably. There is a balance between the performance and complexity of the algorithm. Chapter 4th aims at the defects of high peak-to-average ratio (PAPR) and high out-of-band radiation in MIMO-OFDM-IM signals. The signal is suppressed by PAPR and sidelobe energy, and the signal is recovered at the receiving end. Chapter 5th summarizes the full text and points out the possible research direction in the future.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN919.3

【相似文献】

相关期刊论文 前10条

1 张雁;黄永宣;魏明海;;一种求解最大团问题的自适应过滤局部搜索算法[J];信息与控制;2011年04期

2 肖进杰,朱大铭,马绍汉,潘锐;多服务中心设置问题局部搜索算法的分析与实验[J];计算机工程;2005年12期

3 谢啸虎;黄樟灿;焉炳艳;;多目标遗传局部搜索算法的研究进展[J];武汉理工大学学报(信息与管理工程版);2006年12期

4 潘锐;朱大铭;董林光;董颖;;求解k中间点问题的新局部搜索算法[J];计算机工程与应用;2008年04期

5 詹青青;;启发式局部搜索算法在电路划分中的应用[J];福建电脑;2010年04期

6 韦炜;藤村茂;席裕庚;;求解旅行锦标赛问题的改进混合局部搜索算法[J];计算机仿真;2012年10期

7 吴贵芳,徐科,徐金梧;边界局部搜索算法与应用[J];计算机应用;2005年02期

8 肖进杰;谢青松;牛翠霞;;设备定位问题局部搜索算法的实验[J];计算机工程与应用;2010年02期

9 陈萍;黄厚宽;董兴业;;基于多邻域的车辆路径优化迭代局部搜索算法[J];北京交通大学学报;2009年02期

10 王健;赵娜;刘超;孙志礼;;粒子群及局部搜索算法在串并联系统结构优化中的应用[J];机械与电子;2014年01期

相关会议论文 前1条

1 刘心报;叶强;;基于模块设计的蚁群算法研究综述[A];'2008系统仿真技术及其应用学术会议论文集[C];2008年

相关硕士学位论文 前9条

1 赵轩;求解RCPSP问题的迭代局部搜索算法研究[D];北京交通大学;2016年

2 吴越钟;改进的Lin-Kernighan局部搜索算法和杂交算法在旅行商问题中的应用[D];中国科学技术大学;2016年

3 张峥华;SAT求解局部搜索行为分析与概率控制策略[D];华中科技大学;2014年

4 徐斌;基于索引调制的宽带MIMO-OFDM无线传输技术研究[D];电子科技大学;2016年

5 咸爱勇;合取范式最大不全满足与最大可满足问题的局部搜索算法研究[D];山东大学;2012年

6 高超;随机局部搜索算法及其应用研究[D];中国科学技术大学;2015年

7 殷茜;基于局部搜索的最小可满足问题求解算法研究[D];东北师范大学;2015年

8 温真真;需求可拆分车辆路径问题的迭代局部搜索算法研究[D];北京交通大学;2015年

9 颜远辉;赋权MAX-SAT问题的动态凸化方法[D];福州大学;2011年



本文编号:1474927

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1474927.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户91206***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com