基于主用户特性的频谱检测技术研究
本文选题:时域延续性 切入点:马尔可夫转移特性 出处:《华侨大学》2017年硕士论文 论文类型:学位论文
【摘要】:认知无线电是一种提高授权频段频谱利用率的新兴技术。频谱检测是其关键任务之一。本文分析主用户的行为特性,并研究基于该特性的频谱检测技术。本文首先介绍了认知无线电的背景、概念和关键技术,阐述了频谱检测技术。接着,对现有的几种检测技术进行分析和比较。其中,能量检测法因为结构简单、计算量小,得到广泛使用。其次,本文分析了主用户的时域延续性,介绍了两时隙时域延续性模型,并研究基于该模型的快速能量检测算法。该算法将前两次能量检测的检测结果当作主用户在前两个时隙的实际状态,然后基于时域延续性预判主用户的当前状态,从而减少检测次数,达到快速检测的目的。其中,状态预判可基于OR准则或者AND准则进行,分别对应OTPED算法和ATPED算法。本文在先验等概的条件下推导了这两种算法的检测精度,分析了它们的检测次数。和传统算法相比,上述算法可以在检测精度近似的条件下减少17~20%的检测次数。再次,本文介绍了主用户的马尔可夫转移特性,并基于该特性预测主用户的当前状态,从而动态调整判决门限,提高频谱检测精度。首先假定主用户前一时隙的实际状态已知,在恒虚警条件下,推导出检测概率的理论上界。然后,为了解决主用户实际状态未知的问题,利用检测结果近似实际状态,提出了马尔可夫恒虚警能量检测(MCFED)算法和改进的MCFED(IMCFED)算法。MCFED算法在高信噪比情况下具有很高的检测概率,但在低信噪比区域性能较差。IMCFED则始终优于传统的频谱检测算法。最后,为了兼顾虚警概率和漏检概率的影响,本文研究利用主用户马尔可夫转移特性减少贝叶斯代价。首先提出了马尔可夫贝叶斯能量检测(MBED)算法。其思想是将前一时隙的检测结果看作主用户的实际状态,并根据检测结果选择当前时隙的判决门限。该算法计算量小,信噪比较高时性能较好。为了克服MBED算法在低信噪比条件下检测精度较差的问题,本文又提出了改进的MBED(IMBED)算法。该算法根据预测概率对判决门限进行动态调整,能够进一步减少贝叶斯代价,且适用的信噪比区域更广。
[Abstract]:Cognitive radio is a new technology to improve spectrum efficiency of authorized frequency band. Spectrum detection is one of its key Ren Wuzhi. Firstly, this paper introduces the background, concept and key technology of cognitive radio, and expounds the spectrum detection technology. Then, it analyzes and compares several existing detection techniques. The energy detection method is widely used because of its simple structure and low computational cost. Secondly, the time-domain continuity of the primary user is analyzed, and the time-domain continuity model of two time slots is introduced. The fast energy detection algorithm based on this model is studied, which regards the first two energy detection results as the actual state of the primary user in the first two time slots, and then prejudges the current state of the primary user based on the continuity of time domain. In order to reduce the number of times of detection and achieve the purpose of fast detection, the state prediction can be based on OR criterion or AND criterion, corresponding to OTPED algorithm and ATPED algorithm respectively. In this paper, the detection accuracy of these two algorithms is deduced under the condition of priori probability. The detection times of these algorithms are analyzed. Compared with the traditional algorithms, these algorithms can reduce the detection times by 17% or 20% under the condition of approximate detection accuracy. Thirdly, this paper introduces the Markov transfer characteristics of the primary users. Based on this characteristic, the current state of the primary user is predicted, and the decision threshold is dynamically adjusted to improve the accuracy of the spectrum detection. Firstly, the actual state of the previous slot of the primary user is assumed to be known, and under the condition of constant false alarm, The theoretical upper bound of detection probability is derived. Then, in order to solve the problem that the actual state of the primary user is unknown, the detection result is used to approximate the actual state. Markov constant false alarm energy detection (MCFED) and modified MCFED.MCFED have high detection probability in the case of high signal-to-noise ratio (SNR), but the performance of IMCFED in low signal-to-noise ratio (SNR) region is lower than that of the traditional spectrum detection algorithm. Finally, the MCFED algorithm is always superior to the traditional spectrum detection algorithm. In order to balance the influence of false alarm probability and missed detection probability, In this paper, we study how to reduce the Bayesian cost by using the Markov transfer characteristic of the primary user. Firstly, we propose the Markov Bayesian energy detection (MBED) algorithm. The idea is that the detection results of the previous time slot are regarded as the actual state of the host user. According to the detection results, the decision threshold of the current time slot is selected. The algorithm has less computation and better performance when the signal-to-noise ratio is high. In order to overcome the problem of poor detection accuracy of MBED algorithm under low SNR, In this paper, an improved MBED-IMBED-based algorithm is proposed, which dynamically adjusts the decision threshold according to the prediction probability, which can further reduce the Bayesian cost and has a wider range of applicable signal-to-noise ratio (SNR).
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN925
【相似文献】
相关期刊论文 前10条
1 曹慧;;瑞利信道下多天线能量检测性能研究[J];电视技术;2011年11期
2 吕春英;周宁;赵伟;巩艳;;基于小波包去噪的能量检测方法研究[J];中国无线电;2012年03期
3 段栋栋;骆德渊;;基于信噪比墙的协作能量检测算法[J];电子设计工程;2014年06期
4 林英沛;;一种自适应的快速能量检测方法[J];科技视界;2014年25期
5 刘会衡;胡健;;实高斯信号下的能量检测技术[J];通信技术;2011年08期
6 马国栋;武穆清;徐春秀;;一种新的联合频谱能量检测方法[J];通信技术;2011年04期
7 刘鑫;谭学治;徐贵森;;噪声不确定下认知无线电能量检测性能的分析[J];四川大学学报(工程科学版);2011年06期
8 王蒙;陈德章;杨晶晶;王鲁嘉;黄铭;;基于蒙特卡洛方法的频谱能量检测研究[J];无线电工程;2013年01期
9 许建霞;刘会衡;刘克中;;认知无线电中一种双门限能量检测算法[J];武汉理工大学学报(信息与管理工程版);2011年04期
10 王晓侃;卢光跃;包志强;白辉;;一种新的分布式协作能量检测算法[J];电讯技术;2012年09期
相关博士学位论文 前2条
1 杨志华;IR-UWB能量检测接收机性能优化与评估[D];哈尔滨工业大学;2010年
2 吴进波;感知无线电系统中能量检测及MAC层调度技术的研究[D];北京邮电大学;2010年
相关硕士学位论文 前10条
1 王浩安;基于多层能量检测的动物声音检测与识别[D];福州大学;2013年
2 王欣玉;认知无线电网络中基于能量检测的频谱感知算法研究[D];哈尔滨工业大学;2016年
3 董淑雅;认知无线电中宽带频域能量检测算法研究[D];海南大学;2016年
4 秦协安;基于USRP的认知无线电频谱高效利用技术的研究和实现[D];湖南大学;2015年
5 滑伟;基于能量检测的自适应频谱检测算法研究[D];西安电子科技大学;2015年
6 王隆前;稳定分布噪声中基于能量检测的频谱感知算法研究[D];大连海事大学;2017年
7 高仁阳;基于主用户特性的频谱检测技术研究[D];华侨大学;2017年
8 胡小峰;基于噪声不确定性和用户状态改变的能量检测算法研究[D];重庆邮电大学;2014年
9 李粉;基于噪声不确定度的能量检测研究[D];烟台大学;2012年
10 吴明清;链锯反冲能量检测方法研究[D];上海交通大学;2007年
,本文编号:1625054
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1625054.html