基于物联网的智慧葡萄园管理系统的优化研究
发布时间:2018-04-09 15:20
本文选题:物联网 切入点:智慧农业 出处:《浙江大学》2017年硕士论文
【摘要】:农业物联网通过无线传感器、红外感应器、射频识别技术等信息传感设备,将农产品和互联网连接起来,进行实时数据通信和信息交换,实现智能化的农产品识别、跟踪、监控和管理的一系列过程。农业物联网技术的快速发展和广泛应用,促进了智慧农业的发展。基于物联网技术的智慧农业管理系统,具有高效地实现实时数据通信和信息处理的功能。针对智慧农业管理系统整体架构、数据处理和存储、数据挖掘等方面的研究和优化有利于系统的高效部署和快速运行,对推进农业信息化,提高农业现代化水平有着重大的推动作用。本文主要完成工作:(1)基于物联网结构模型对智慧葡萄园管理系统的整体架构进行研究,采用分层的思想设计了整体系统架构;基于软件系统设计原则对软件系统的架构进行了研究,结合分层的思想设计了软件系统架构;遵循标准化的原则基于JSON数据交换格式设计了软件系统与嵌入式网关之间的自定义通信协议,保证了系统内部的信息交换和数据通信。(2)解决了系统实际调试过程中影响系统运行的两个问题,一个是无线传感器节点的功耗问题,另一个是电压不稳定导致的嵌入式数据库崩溃的问题。分析了问题对整个系统的影响,并提出了相对应的解决方案,对改进后的方案效果进行了分析。(3)对软件系统的数据存储模块、数据处理模块、数据挖掘模块进行了研究和优化:根据数据库性能的影响因素和生命周期存储策略提出数据库的优化方案;基于n-of-N模型和生命周期存储策略的数据流处理模型对数据处理模块进行优化;基于最远优先的K-means算法进行数据挖掘的研究。(4)根据需求实现智慧葡萄园管理系统,在系统中实现了数据库存储优化、数据处理模块优化以及利用最远优先K-means算法选择葡萄植株生长曲线。研究结果表明,数据库存储优化、基于n-of-N模型和生命周期存储策略的数据流处理模型对数据处理模块的优化,最远优先K-means算法选择葡萄植株生长曲线在分层思想设计的智慧葡萄园管理系统中都实现了较好的效果。
[Abstract]:Through wireless sensors, infrared sensors, radio frequency identification technology and other information sensing devices, the agricultural Internet of things connects agricultural products to the Internet for real-time data communication and information exchange, so as to realize intelligent identification and tracking of agricultural products.Monitor and manage a series of processes.The rapid development and wide application of agricultural Internet of things technology has promoted the development of intelligent agriculture.Intelligent agricultural management system based on Internet of things has the function of realizing real-time data communication and information processing efficiently.The research and optimization of intelligent agricultural management system, such as the whole structure of intelligent agricultural management system, data processing and storage, data mining and so on, is conducive to the efficient deployment and rapid operation of the system, and to the promotion of agricultural information,Improving the level of agricultural modernization has a major role in promoting.This paper mainly completes the work: 1) based on the structure model of the Internet of things, the whole structure of the intelligent vineyard management system is studied, and the overall system architecture is designed with the idea of stratification.Based on the principles of software system design, the architecture of software system is studied, and the architecture of software system is designed based on the idea of hierarchy.Following the principle of standardization, a custom communication protocol between software system and embedded gateway is designed based on JSON data exchange format.The information exchange and data communication within the system are guaranteed to solve two problems that affect the operation of the system in the actual debugging process, one is the power consumption of the wireless sensor node, and the other is the power consumption of the wireless sensor node.The other is the voltage instability caused by the embedded database crash problem.The influence of the problem on the whole system is analyzed, and the corresponding solution is put forward. The effect of the improved scheme is analyzed. The data storage module and the data processing module of the software system are analyzed.The data mining module is studied and optimized: according to the influencing factors of database performance and the life-cycle storage strategy, the optimization scheme of database is put forward;The data processing module is optimized based on the n-of-N model and the data stream processing model based on the life-cycle storage strategy, and the data mining based on the farthest priority K-means algorithm is studied. 4) the intelligent vineyard management system is implemented according to the requirements.Database storage optimization, data processing module optimization and selection of grape plant growth curve using farthest priority K-means algorithm are realized in the system.The results show that database storage optimization, data flow processing model based on n-of-N model and lifecycle storage strategy are optimized for data processing module.The farthest priority K-means algorithm for selecting the growth curve of grape plants has achieved good results in the intelligent vineyard management system designed by layering idea.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.44;TN929.5;TP311.52
【参考文献】
相关期刊论文 前10条
1 文燕;李敏;;大数据在智慧农业中的应用与实现[J];科技展望;2016年26期
2 孙忠富;杜克明;郑飞翔;尹首一;;大数据在智慧农业中研究与应用展望[J];中国农业科技导报;2013年06期
3 何勇;聂鹏程;刘飞;;农业物联网与传感仪器研究进展[J];农业机械学报;2013年10期
4 施连敏;陈志峰;盖之华;;物联网在智慧农业中的应用[J];农机化研究;2013年06期
5 陈海明;崔莉;谢开斌;;物联网体系结构与实现方法的比较研究[J];计算机学报;2013年01期
6 廖海生;;数据分级存储系统中数据分级算法研究[J];甘肃联合大学学报(自然科学版);2012年04期
7 李怀川;吴孟春;;利用微软图表控件MSChart实现紫外线数据图形化显示[J];计算机与网络;2012年12期
8 钱志鸿;王义君;;物联网技术与应用研究[J];电子学报;2012年05期
9 王千;王成;冯振元;叶金凤;;K-means聚类算法研究综述[J];电子设计工程;2012年07期
10 李道亮;;物联网与智慧农业[J];农业工程;2012年01期
相关博士学位论文 前2条
1 曹振丽;面向养殖环境监测的数据流处理方法研究[D];中国农业大学;2015年
2 申彦;大规模数据集高效数据挖掘算法研究[D];江苏大学;2013年
,本文编号:1726998
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1726998.html