基于GMM托肯配比相似度校正得分的说话人识别
本文选题:说话人识别 + GMM托肯配比(GTR) ; 参考:《清华大学学报(自然科学版)》2017年01期
【摘要】:该文提出一种基于Gauss混合模型(GMM)托肯配比相似度校正得分(GMM token ratio similarity based score regulation,GTRSR)的说话人识别方法。基于GMM-UBM(通用背景模型)识别框架,在自适应训练和测试阶段计算并保存自适应训练语句和测试语句在UBM上使特征帧得分最高的Gauss分量编号(GMM token)出现的比例(配比),然后在测试阶段计算测试语句和自适应训练语句的GMM托肯分布的配比的相似度GTRS,当GTRS小于某阈值时对测试得分乘以一个惩罚因子,将结果作为测试语句的最终得分。在MASC数据库上进行的实验表明,该方法能够使系统识别性能有一定的提升。
[Abstract]:In this paper, a speaker recognition method based on Gauss mixed model (GMM) and Tocken matching similarity correction score (GMM token ratio similarity based score regulation) is proposed.Based on GMM-UBM-based recognition framework,Calculate and save the proportion of adaptive training statements and test statements on the UBM that number the Gauss component with the highest score of feature frames during the adaptive training and test phases (matching ratio), and then calculate the test statements and the test statements during the test phaseThe similarity of the GMM token distribution of an adaptive training statement, where the test score is multiplied by a penalty factor when the GTRS is less than a threshold.Take the result as the final score of the test statement.Experiments on MASC database show that this method can improve the recognition performance of the system.
【作者单位】: 浙江大学计算机学院;
【基金】:国家“九七三”重点基础研究项目(2013CB329504) 国家自然科学基金面上项目(60970080)
【分类号】:TN912.34
【相似文献】
相关期刊论文 前10条
1 石艳;王晓晔;;新颖检测法在说话人识别技术中的应用[J];现代计算机(专业版);2008年07期
2 刘雪燕;张娜;袁宝玲;;说话人识别综述[J];电脑知识与技术;2009年01期
3 邱政权;范小春;王俊年;;基于动态环境下的说话人识别[J];科学技术与工程;2010年02期
4 单进;;说话人识别技术研究[J];科技资讯;2010年21期
5 申志生;于明;;说话人识别算法的定点DSP实现[J];单片机与嵌入式系统应用;2011年03期
6 谢建勋;;浅谈说话人识别技术[J];电脑知识与技术;2011年11期
7 安茂波;刘建;;一个快速说话人识别系统的设计和实现[J];网络新媒体技术;2012年03期
8 杨迪;戚银城;刘明军;张华芳子;武军娜;;说话人识别综述[J];电子科技;2012年06期
9 武光利;;说话人识别方法概述[J];硅谷;2012年19期
10 曹业敏,侯风雷,王炳锡;说话人识别技术现状与进展[J];河南科技;1998年09期
相关会议论文 前10条
1 鲍福良;方志刚;徐洁;;说话人识别综述[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年
2 孙帆;迟惠生;;循环网络说话人识别[A];第二届全国人机语音通讯学术会议论文集[C];1992年
3 肖剑;欧贵文;;多层前馈神经网络组的文本无关说话人识别[A];第七届全国人机语音通讯学术会议(NCMMSC7)论文集[C];2003年
4 张玲华;郑宝玉;杨震;;模糊超椭球聚类算法及其在说话人识别中的应用研究[A];第八届全国人机语音通讯学术会议论文集[C];2005年
5 王宏;潘金贵;;基于矩阵正态分布的文本有关说话人识别[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(上册)[C];2007年
6 戴红霞;赵力;;文本无关说话人识别系统的研究[A];2007’促进西部发展声学学术交流会论文集[C];2007年
7 陈联武;郭武;戴礼荣;;说话人识别系统中多样训练的应用[A];第十一届全国人机语音通讯学术会议论文集(一)[C];2011年
8 崔玉红;胡光锐;;基于神经网络特征维数压缩方法及其在说话人识别中的应用[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
9 吴丽丽;;基于仿生模式识别的说话人识别学习模型研究[A];第二届中国科学院博士后学术年会暨高新技术前沿与发展学术会议程序册[C];2010年
10 张晶;董金明;冯文全;;说话人识别系统研究与实现[A];全国第二届信号处理与应用学术会议专刊[C];2008年
相关重要报纸文章 前2条
1 汪永安;科大讯飞说话人识别技术世界领先[N];安徽日报;2008年
2 吴长锋;科大讯飞勇夺说话人识别国际大赛第一[N];科技日报;2008年
相关博士学位论文 前10条
1 单振宇;情感说话人识别及其解决方法的研究[D];浙江大学;2010年
2 别凡虎;说话人识别中区分性问题的研究[D];清华大学;2015年
3 谢怡宁;基于稀疏编码的鲁棒说话人识别方法研究[D];哈尔滨理工大学;2016年
4 安冬;噪声背景下说话人识别的若干关键问题研究[D];东北大学;2013年
5 吴迪;低信噪比环境下说话人识别研究[D];苏州大学;2016年
6 陆伟;基于缺失特征的文本无关说话人识别鲁棒性研究[D];中国科学技术大学;2008年
7 刘镝;说话人识别中信息融合算法的研究[D];北京交通大学;2011年
8 付中华;说话人识别系统鲁棒性研究[D];西北工业大学;2004年
9 林琳;基于模糊聚类与遗传算法的说话人识别理论研究及应用[D];吉林大学;2007年
10 邱政权;在噪声环境下的说话人识别[D];华南理工大学;2007年
相关硕士学位论文 前10条
1 丛菡菡;基于支持相量机的稳键说话人识别[D];电子科技大学;2008年
2 任舒彬;面向手持应用的说话人识别算法研究[D];浙江大学;2006年
3 申志生;文本相关说话人识别嵌入式系统及其关键技术研究[D];河北工业大学;2011年
4 汪q,
本文编号:1763042
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1763042.html