固态太赫兹高速无线通信技术
本文选题:太赫兹波 + 肖特基势垒二极管 ; 参考:《电子科技大学》2017年博士论文
【摘要】:太赫兹波是指频率在100GHz到10THz之间的电磁波。这一段电磁频谱处于传统电子学和光子学研究频段之间的特殊位置,过去对其研究以及开发利用都相对较少。随着无线通信的高速发展,现有的频谱资源已变得日益匮乏,开发无线通信的新频段已逐渐成为解决此矛盾的一种共识,而在太赫兹频段存在大量未被开发的频谱资源,使得太赫兹频率适于作为未来无线通信的新频段。在众多技术途径中,采用固态电子学的技术途径实现无线通信系统,未来存在将系统进行片上集成的可能,这对太赫兹无线通信系统走向实用化具有重要意义。本文研究围绕固态太赫兹高速无线通信技术展开,以无线通信系统的实现为牵引,对构成太赫兹无线系统的两种关键电路(分谐波混频器和二倍频器)进行了深入研究,基于关键电路的突破,构建了太赫兹无线通信系统并成功进行了高速无线数据传输实验。本文主要内容包括以下三个方面:(1)太赫兹频段分谐波混频技术。分谐波混频器在无线系统中实现频率变换的功能,在缺乏固态放大器的太赫兹频段,这个关键电路的指标直接关系到系统的整体性能。本文研究从肖特基势垒二极管的物理机理入手,对混频二极管的等效电路模型、噪声模型和三维电磁模型的建模方法进行了深入的理论研究,分析了二极管参数和封装寄生参数对混频性能的影响,并提出了一种基于器件三维电磁模型提取反向并联二极管对寄生电容的方法。为提高电路优化效率,本文提出了一种电路优化方法,该方法的基本思想是,首先找到非线性器件的最优工作状态,以及使器件达到最优工作状态所需的阻抗条件,以满足阻抗条件为目标,通过S参数优化匹配,在匹配网络确定后,再结合器件非线性模型完成电路优化。应用该方法,本文对220GHz分谐波混频器电路进行了优化,在仿真噪声性能时,提出了一种引入外加噪声源来等效热电子噪声的方法。本文构建实验平台开展了实验研究,实验结果表明,该混频器在188-244GHz频带内,双边带等效噪声温度小于1500K,双边带变频损耗小于10dB,实验结果与仿真预测吻合较好,验证了二极管建模以及电路优化方法的有效性。(2)太赫兹频段二倍频技术。频率倍增是产生太赫兹频率信号的一种重要技术途径,二倍频器是组成固态太赫兹信号源的关键电路之一。从变容二极管工作机理入手,本文通过深入的理论研究,基于理论推导,讨论了变容二极管参数对二倍频性能的影响,分析了设计变容二极管时需要考虑的主要参数。针对190GHz和180GHz两个二倍频器的特定电路性能要求,本文建立了变容二极管倍频性能分析模型,定量分析了变容二极管参数对倍频性能的影响,设计了两个二倍频器的变容二极管,并完成了二极管流片。利用本文提出的电路优化方法对二倍频器进行了优化,并构建实验平台开展了实验研究。实验结果表明,190GHz二倍频器输出频带为190-198GHz,最大可承受350mW的输入功率;当输入功率为200mW时,在193GHz处获得最大倍频效率8%,输出功率达到16mW;在该频点处当输入功率为350mW时,输出功率为24.12mW,倍频效率为6.89%。180GHz二倍频器在输出频率为173-184GHz的频带内,当输入功率为100mW时,倍频效率大于10%,在183GHz处获得最大倍频效率15.5%;在该频点处当输入功率为200mW时,输出功率为24.17mW,倍频效率为12.1%。实验结果与仿真预测吻合较好,验证了变容二极管建模、器件设计以及电路优化方法的有效性。(3)太赫兹高速无线通信技术。在关键电路研究取得突破的基础上,本文开展了太赫兹无线通信技术研究,构建了 120GHz无线通信原理验证系统和220GHz实验验证系统。120GHz原理验证系统实现了码速率高达12.5Gbit/s的无线数据传输,验证了太赫兹波应用于无线通信的带宽优势。220GHz实验验证系统在室外200m的通信距离上,实现了码速率为3.52Gbit/s的高速无线数据传输,传输误码率为 1.92×10-6。通过本文的研究,展现出太赫兹波用于高速无线通信的巨大潜力,也验证了太赫兹无线通信未来走向实际应用的可行性,为未来开发太赫兹频率资源作为新的无线通信频段奠定了重要的理论和技术基础。
[Abstract]:The terahertz wave refers to the electromagnetic wave between 100GHz and 10THz. The electromagnetic spectrum is in a special position between the traditional electronics and the photonics research bands, and the research and exploitation of it in the past are relatively small. With the rapid development of wireless communication, the existing spectrum resources have become increasingly scarce and the wireless communication is developed. The new frequency band has gradually become a consensus to solve this problem, and there are a large number of undeveloped spectrum resources in the terahertz band, making the terahertz frequency suitable for the new band of future wireless communication. In many technical ways, the wireless communication system is realized by the technology of solid-state electronics. The possibility of integration is of great significance for the development of the terahertz wireless communication system. This paper focuses on the development of the solid-state terahertz high speed wireless communication technology and the realization of the wireless communication system as traction. The two key circuits (harmonic mixer and two frequency doubler), which constitute the terahertz wireless system, are deeply studied. In the breakthrough of key circuit, the terahertz wireless communication system is constructed and the high speed wireless data transmission experiment is successfully carried out. The main contents of this paper include the following three aspects: (1) the terahertz frequency division harmonic mixing technology. The function of frequency conversion in the wireless system is realized by the harmonic mixer in the wireless system, and the terahertz band lacks the solid-state amplifier in the terahertz frequency band. This key circuit is directly related to the overall performance of the system. This paper, starting with the physical mechanism of the Schottky barrier diode, studies the equivalent circuit model of the mixer diode, the noise model and the modeling method of the three-dimensional electromagnetic model, and analyzes the diode parameters and the parasitic parameters of the packaging. In order to improve the efficiency of circuit optimization, a circuit optimization method is proposed to improve the efficiency of circuit optimization. The basic idea of this method is to find the best working state of the nonlinear device and make the device achieve the best working condition. The impedance condition required to satisfy the impedance condition is to meet the impedance condition as the target. The matching network is optimized by S parameters. The circuit optimization is completed with the nonlinear model of the device after the matching network is determined. This method is used to optimize the 220GHz subharmonic mixer circuit. In the simulation noise performance, a kind of added noise source is introduced to be equivalent. The experimental results show that the mixer is in the 188-244GHz frequency band, the equivalent noise temperature of the bilateral band is less than 1500K, the bilateral band frequency loss is less than 10dB, the experimental results are in good agreement with the simulation prediction, and the effectiveness of the diode modeling and the circuit optimization method is verified. (2) Terahertz frequency two frequency doubling technology. Frequency multiplication is an important technical way to produce terahertz frequency signal. The two frequency doubler is one of the key circuits to make up the solid terahertz signal source. Starting with the working mechanism of the varactor diode, this paper has discussed the parameter of the varactor diode to two times on the basis of theoretical research and theoretical deduction. With the influence of frequency performance, the main parameters to be considered when designing varactor diodes are analyzed. In view of the specific circuit performance requirements of the two two doubler of 190GHz and 180GHz, an analysis model of the varactor frequency doubling performance is established in this paper. The influence of the varactor parameters on the frequency doubling performance is quantitatively analyzed, and the variation capacity of the two two frequency doubler is designed. Diode, and complete the diode flow sheet. Using the circuit optimization method proposed in this paper, the two frequency doubler is optimized and the experimental platform is built. The experimental results show that the output frequency band of the 190GHz two frequency doubler is 190-198GHz, and the maximum input power of 350mW can be withstood. When the input power is 200mW, the maximum is obtained at 193GHz. The large frequency doubling efficiency is 8%, the output power is 16mW. When the input power is 350mW, the output power is 24.12mW and the frequency doubling efficiency is 6.89%.180GHz two frequency doubler in the frequency band of 173-184GHz. When the input power is 100mW, the frequency doubling efficiency is greater than 10%, and the maximum frequency doubling efficiency is 15.5% at 183GHz. When the input power is 200mW, the output power is 24.17mW, the frequency doubling efficiency is 12.1%., and the experimental results are in good agreement with the simulation prediction. The validity of the varactor modeling, the device design and the circuit optimization method is verified. (3) the terahertz high-speed wireless communication technology. On the basis of the breakthrough in the key circuit research, the terahertz wireless communication is carried out in this paper. Communication technology research, construction of the 120GHz wireless communication principle verification system and the 220GHz experimental verification system.120GHz principle verification system to realize the wireless data transmission with the code rate up to 12.5Gbit/s, verify the bandwidth advantage of the terahertz wave used in the wireless communication.220GHz experimental verification system in the outdoor 200m communication distance, the implementation of the code The rate of 3.52Gbit/s is high speed wireless data transmission, the transmission error rate is 1.92 x 10-6. through this paper, which shows the great potential of the terahertz wave used in high-speed wireless communication. It also validates the feasibility of the terahertz wireless communication in the future to the practical application. It lays the foundation for the development of the terahertz frequency resources as a new wireless communication band in the future. An important theoretical and technical basis has been set up.
【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TN92
【参考文献】
相关期刊论文 前10条
1 蒋均;何月;王成;刘杰;田遥岭;张健;邓贤进;;基于Schottky二极管和Hammer-Head滤波器0.67THz二次谐波混频器[J];红外与毫米波学报;2016年04期
2 赵鑫;蒋长宏;张德海;孟进;姚常飞;;基于肖特基二极管的450 GHz二次谐波混频器[J];红外与毫米波学报;2015年03期
3 姚常飞;周明;罗运生;寇亚男;;基于倒扣技术的190~225GHz肖特基二极管高效率二倍频器(英文)[J];红外与毫米波学报;2015年01期
4 张勇;卢秋全;刘伟;李理;徐锐敏;;基于肖特基势垒二极管三维电磁模型的220GHz三倍频器[J];红外与毫米波学报;2014年04期
5 姚建铨;钟凯;徐德刚;;太赫兹空间应用研究与展望[J];空间电子技术;2013年02期
6 姚常飞;周明;罗运生;王毅刚;许从海;;基于肖特基平面二极管的150GHz和180GHz固定调节式倍频源(英文)[J];红外与毫米波学报;2013年02期
7 安大伟;于伟华;吕昕;;基于石英基片的二毫米波段二次谐波混频器设计和研制[J];红外与毫米波学报;2011年01期
8 张勇;林元根;;185GHz固态二倍频器研究[J];电子科技大学学报;2010年02期
9 刘盛纲;钟任斌;;太赫兹科学技术及其应用的新发展[J];电子科技大学学报;2009年05期
10 姚建铨;迟楠;杨鹏飞;崔海霞;汪静丽;李九生;徐德刚;丁欣;;太赫兹通信技术的研究与展望[J];中国激光;2009年09期
相关博士学位论文 前2条
1 赵伟;毫米波及太赫兹混频技术研究[D];电子科技大学;2015年
2 杨晓帆;基于平面肖特基二极管的太赫兹分谐波混频器研究[D];电子科技大学;2012年
相关硕士学位论文 前4条
1 周扬帆;高性能太赫兹无源器件研究[D];电子科技大学;2015年
2 任玉兴;毫米波倍频源技术研究[D];电子科技大学;2014年
3 高意;X波段高增益放大链路研究[D];电子科技大学;2014年
4 陈哲;太赫兹频段分谐波混频器研究[D];电子科技大学;2011年
,本文编号:1940240
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1940240.html