模分复用系统中少模光子晶体光纤及模式转换器的设计及研究
本文选题:模分复用 + 少模光子晶体光纤 ; 参考:《南京邮电大学》2017年硕士论文
【摘要】:近年来,波分复用系统因单模光纤的非线性容忍度小,传输容量越来越接近香农极限。为了进一步扩充光纤通信的容量,以模式为自由度的模分复用技术应运而生。模分复用技术利用少模光纤中的高阶模式作为新的独立信道,成倍地提高了光纤通信系统的容量和传输效率。同时,光纤模式转换是利用模式耦合原理实现基模和高阶模的能量交换,是构建模分复用系统的关键技术之一,也是近年来的研究热点。光子晶体光纤因其灵活的结构设计性和和特殊的光学特性,广泛应用在光纤传输及光学器件的设计等领域。本文从实用化角度出发,设计了基于光子晶体光纤的少模传输光纤和模式转换器。利用麦克斯韦方程分析少模光子晶体光纤中的模式特性,利用波导耦合理论分析了模式转换的原理,为少模传输和模式转换器的实现提供了理论依据,论文的具体工作如下:本文首先针对长距离大容量光纤传输系统,从降低制作难度和提高实用性出发,设计了一种单芯的双模PCF。在1.46~1.56μm波长段内,该光纤可实现稳定的基模和二阶模的双模传输,模式间有效折射率差大于0.001,避免了模间串扰。通过优化结构得到Λ=10μm,d_1/Λ=0.55、d_2/Λ=0.65、d_3/Λ=0.75时,基模和二阶模在C波段上的相对色散系数分别为2.138ps/(nm·km)、1.154ps/(nm·km),色散斜率介于-0.012~0.322 ps/(nm~2·km)之间满足色散平坦要求;1.55μm处,模场面积分别为106.72μm~2和155.34μm~2;传输模式的衰减系数小于1.41×10~(-5)d B/m,总损耗小于10~(-4)量级。双模PCF的传输特性符合G.652和G.655光纤标准,且有效抑制了非线性效应,参考现有光纤成熟的制备技术,具有广阔的实用化前景。其次,针对模分复用技术中的模式转换问题,提出了一种基于PCF的模式转换器,实现了LP_(01)和LP_(11)模的低损耗转换。在1.50~1.56μm范围内,耦合效率可达92.93%,传输损耗小于1d B,并具有宽带特性。文中给出基于少模光子晶体光纤的模分复用系统结构模型,对相关技术问题做了论述。本文的研究均基于光子晶体光纤的特殊结构及特性,有利于新一代光纤通信技术的进一步研究和应用。
[Abstract]:In recent years, because of the small nonlinear tolerance of single-mode optical fiber, the transmission capacity of WDM system is closer to Shannon limit. In order to further expand the capacity of optical fiber communication, modular division multiplexing (DM) technology with Mode-Degree-of-Freedom (DOF) emerged as the times require. Mode division multiplexing (MWDM) uses high-order modes in low-mode optical fiber as a new independent channel, which can greatly improve the capacity and transmission efficiency of optical fiber communication system. At the same time, the mode conversion of fiber is one of the key technologies to construct the modular division multiplexing system, which realizes the energy exchange between the base mode and the high order mode by using the mode coupling principle, and is also the research hotspot in recent years. Photonic crystal fiber (PCF) is widely used in optical fiber transmission and optical device design due to its flexible structural design and special optical properties. In this paper, we design a low mode transmission fiber and mode converter based on photonic crystal fiber. Using Maxwell equation to analyze the mode characteristics in the photonic crystal fiber, and the waveguide coupling theory is used to analyze the principle of mode conversion, which provides a theoretical basis for the realization of the mode converter and the transmission of the less mode. The main work of this paper is as follows: firstly, a single-core dual-mode PCF is designed in order to reduce the fabrication difficulty and improve the practicability of the long distance and large capacity optical fiber transmission system. In the wavelength range of 1.46 渭 m and 1.56 渭 m, the fiber can achieve stable two-mode transmission of base mode and second-order mode. The effective refractive index difference between modes is greater than 0.001, thus avoiding crosstalk between modes. By optimizing the structure, the relative dispersion coefficients of the base mode and the second-order mode in C band are found to be 1.154 ps-1 / 0.55 ps/(nm~2 / 渭 m, respectively, and the dispersion slope between -0.0120.322 ps/(nm~2 km and 1.55 渭 m for the base mode and the second-order mode at C band, respectively, and the dispersion slope is between -0.0120.322 ps/(nm~2 km. the relative dispersion coefficients of the base mode and the second-order mode are 1.55 渭 m and 1.55 渭 m, respectively, and the dispersion slope is -0.0120.322 ps/(nm~2 / km, and the relative dispersion coefficients of the base mode and the second-order mode in C band are 1.154ps-1. The mode field area is 106.72 渭 m ~ (2) and 155.34 渭 m ~ (-2), respectively. The attenuation coefficient of transmission mode is less than 1.41 脳 10 ~ (-5) dB / m, and the total loss is less than 10 ~ (10) ~ (-4). The transmission characteristics of dual-mode PCF accord with G. 652 and G.655 fiber standards, and effectively suppress the nonlinear effect. Referring to the existing mature fabrication technology of fiber, it has a broad practical prospect. Secondly, a mode converter based on PCF is proposed to solve the mode conversion problem in mode division multiplexing technology. In the range of 1.50 ~ 1.56 渭 m, the coupling efficiency can reach 92.93, the transmission loss is less than 1dB, and it has broadband characteristics. In this paper, the structure model of module division multiplexing system based on low mode photonic crystal fiber is presented, and the related technical problems are discussed. The research in this paper is based on the special structure and characteristics of photonic crystal fiber, which is beneficial to the further research and application of the new generation optical fiber communication technology.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN253;TN929.11
【参考文献】
相关期刊论文 前10条
1 徐闵喃;周桂耀;陈成;侯峙云;夏长明;周概;刘宏展;刘建涛;张卫;;具有四模式的低串扰及大群时延多芯微结构光纤的设计[J];物理学报;2015年23期
2 陆驹;陈明阳;张永康;;全光纤模式转换器的设计及优化[J];光子学报;2014年09期
3 陈艳;周桂耀;夏长明;侯峙云;刘宏展;王超;;具有双模特性的大模场面积微结构光纤的设计[J];物理学报;2014年01期
4 肖健;胡贵军;杜洋;李公羽;李莉;;用于模式复用的少模光纤设计及特性分析[J];半导体光电;2013年05期
5 姚殊畅;付松年;张敏明;唐明;沈平;刘德明;;基于少模光纤的模分复用系统多输入多输出均衡与解调[J];物理学报;2013年14期
6 杜海龙;丁春峰;郑义;;光子晶体光纤损耗特性的数值研究[J];光通信研究;2013年03期
7 杨清;施解龙;孙伟胜;黄图斌;;基于光纤拉锥模场匹配技术的光子晶体光纤低损耗熔接[J];光学学报;2012年10期
8 杨旺喜;周桂耀;夏长明;王伟;胡慧军;侯蓝田;;C波段具有平坦近零色散光子晶体光纤的一种改进设计方法[J];物理学报;2011年10期
9 李鹏;赵建林;张晓娟;侯建平;;三角结构三芯光子晶体光纤中的模式耦合特性分析[J];物理学报;2010年12期
10 孙兵;陈明阳;周骏;余学权;张永康;于荣金;;非对称双芯光子晶体光纤宽带模式转换器研究[J];光学学报;2010年06期
相关博士学位论文 前2条
1 兰名荣;模分复用光纤通信系统中模式控制关键技术研究[D];北京邮电大学;2015年
2 刘兆伦;光子晶体光纤的光学特性分析与优化设计[D];燕山大学;2007年
相关硕士学位论文 前3条
1 蔡璐;少模模式复用系统与模式耦合效应的研究[D];北京邮电大学;2014年
2 石健;基于少模光纤的模式复用通信技术研究[D];吉林大学;2013年
3 梁骏;太赫兹准光模式变换器的研究[D];电子科技大学;2013年
,本文编号:1957608
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1957608.html