一种新的基于稀疏表示的单通道盲源分离算法
本文选题:稀疏表示 + 单通道盲源分离 ; 参考:《电子与信息学报》2017年06期
【摘要】:该文针对稀疏表示应用于单通道盲源分离中存在字典间互干扰的问题,通过在常规联合字典中引入一个新的子字典——"共同子字典",提出一种新的基于稀疏表示的单通道盲源分离算法。新的字典学习目标函数中单个源的保真度由对应子字典和共同子字典构成,共同子字典的存在可以有效避免某一源信号在其他子字典上寻求成份而带来的互干扰问题。目标函数的求解通过交替执行稀疏表示、字典更新和比例系数优化3个步骤来实现。在测试阶段,通过收集单个源所对应子字典和共同子字典上的分量可以估计出混合信号中的单个源信号,从而达到盲源分离的目的。在语音数据库上进行的对比实验发现,所提算法较传统算法和前沿算法在两个通用评价指标上最高有近1 dB的提高。
[Abstract]:In this paper, the problem of dictionary interferences in single channel blind source separation based on sparse representation is discussed. A new single-channel blind source separation algorithm based on sparse representation is proposed by introducing a new sub-dictionary, "common sub-dictionary", into the conventional joint dictionary. The fidelity of a single source in a new dictionary learning objective function is composed of a corresponding sub-dictionary and a common sub-dictionary. The existence of a common sub-dictionary can effectively avoid the problem of mutual interference caused by a source signal seeking components in other sub-dictionaries. The solution of the objective function is realized by alternating sparse representation, dictionary updating and proportion coefficient optimization. In the testing stage, the single source signal in the mixed signal can be estimated by collecting the components of the corresponding sub-dictionary and common sub-dictionary of a single source, thus achieving the purpose of blind source separation. The comparison experiments on the speech database show that the proposed algorithm is better than the traditional algorithm and the forward algorithm in two general evaluation indexes, which are up to 1 dB.
【作者单位】: 空军工程大学航空航天工程学院;
【基金】:国家自然科学基金(61372167) 航空科学基金(20152096019)~~
【分类号】:TN911.7
【相似文献】
相关期刊论文 前10条
1 李广彪,张剑云,毛云祥;盲源分离的发展及研究现状[J];航天电子对抗;2004年06期
2 王昆;;盲源分离问题的分析研究[J];科技信息;2008年29期
3 柯维;张永祥;吕博;;基于微分进化算法的盲源分离[J];海军工程大学学报;2012年05期
4 林秋华,殷福亮;盲源分离自适应算法的统一形式[J];大连理工大学学报;2002年04期
5 刘海林;谢胜利;章晋龙;;微延迟病态卷积混叠盲源分离的可分性研究[J];计算机科学;2003年07期
6 吴微东,庄哲民;基于盲源分离的一种快速独立分量分析算法[J];汕头大学学报(自然科学版);2004年02期
7 郭松;孙云莲;;基于独立分量分析盲源分离快速算法[J];电子测量技术;2004年02期
8 丁铎,贾永强,王映民;一种基于峰度的盲源分离算法研究[J];现代电子技术;2005年14期
9 肖俊,何为伟;源信号数目大于观察信号数目情况下的盲源分离[J];现代电子技术;2005年11期
10 李广彪,张剑云,毛云祥;盲源分离中的非高斯性极大准则[J];舰船电子对抗;2005年05期
相关会议论文 前10条
1 李舜酩;;转子振动信号的盲源分离研究[A];第三届全国虚拟仪器大会论文集[C];2008年
2 许林周;章新华;范文涛;;一种盲源分离后续去冗余方法[A];2009年全国水声学学术交流暨水声学分会换届改选会议论文集[C];2009年
3 韩少博;林京;吴文焘;;频域盲源分离中的一种稳健解排列模糊方法[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
4 章林柯;何琳;江涌;;基于盲源分离的潜艇源识别信号去除干扰研究[A];第十一届船舶水下噪声学术讨论会论文集[C];2007年
5 康春玉;章新华;李军;;盲源分离与自适应滤波器结合抑制强干扰研究[A];2012'中国西部声学学术交流会论文集(Ⅱ)[C];2012年
6 周祥;樊涛;;基于盲源分离的储油罐底腐蚀混叠信号的识别与分离[A];第八届沈阳科学学术年会论文集[C];2011年
7 王颖翠;;一种基于自然梯度的卷积混合频域盲源分离算法[A];现代通信理论与信号处理进展——2003年通信理论与信号处理年会论文集[C];2003年
8 许策;章新华;高成志;;源数目估计对盲源分离算法影响分析[A];2007年全国水声学学术会议论文集[C];2007年
9 成谢锋;张仲;孙夏;;一种单路混合信号的盲源分离新方法[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
10 胡增辉;朱炬波;;基于盲源分离的波达角估计[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
相关博士学位论文 前10条
1 张良俊;欠定盲源分离算法及其应用研究[D];武汉理工大学;2015年
2 吴微;含噪盲源分离算法研究及其在水声信号中的应用[D];解放军信息工程大学;2014年
3 骆忠强;无线通信盲源分离关键技术研究[D];电子科技大学;2016年
4 徐先峰;利用参量结构解盲源分离算法研究[D];西安电子科技大学;2010年
5 王尔馥;盲源分离理论及其在通信系统中的应用[D];哈尔滨工业大学;2009年
6 李昌利;盲源分离的若干算法及应用研究[D];西安电子科技大学;2010年
7 高建彬;盲源分离算法及相关理论研究[D];电子科技大学;2012年
8 郭靖;盲源分离的时频域算法研究[D];重庆大学;2012年
9 刘建强;非平稳环境中的盲源分离算法研究[D];西安电子科技大学;2009年
10 李灯熬;基于循环平衡理论的盲源分离算法[D];太原理工大学;2010年
相关硕士学位论文 前10条
1 彭帆;多输入多输出系统盲源分离频域新方法的研究[D];汕头大学;2002年
2 程舒慧;动态盲源分离及其在生物医学信号处理中的应用研究[D];安徽大学;2011年
3 张政;基于独立分量分析的盲源分离算法优化研究[D];南京信息工程大学;2015年
4 姚鑫;基于EEMD的单通道盲源分离研究与应用[D];大连交通大学;2015年
5 张颖;低角雷达盲信号分离方法研究[D];河南师范大学;2015年
6 吴康锐;基于空间几何信息约束的欠定卷积盲源分离[D];南昌大学;2015年
7 李莽;盲源分离在信号探测中的应用[D];电子科技大学;2014年
8 宋继飞;噪声条件下欠定盲源分离算法研究[D];大连理工大学;2015年
9 张山;基于双麦克风的盲声源处理算法研究[D];电子科技大学;2015年
10 方健;基于盲源分离的MIMO雷达侦察与识别[D];西安电子科技大学;2014年
,本文编号:2091266
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2091266.html