当前位置:主页 > 科技论文 > 信息工程论文 >

基于Markov网络的结果重排技术

发布时间:2016-12-10 12:52

  本文关键词:基于Markov网络的结果重排技术,由笔耕文化传播整理发布。


  • 重庆邮电大学学报(自然科学版) , 2013,Vol.25(6)
  • 基于Markov网络的结果重排技术
  • 曹瑛1    涂伟2    甘丽新3   
  • 江西理工大学现代教育技术及信息中心,江西赣州341000
  • 江西科技师范大学光电子与通信重点试验室,江西南昌330038
  • 江西科技师范大学文科综合实验中心,江西南昌330038
  • 摘要
  • 参考文献
  • 下载: 访问网刊     导出: EndNote (RIS)

    摘要:

    信息检索中通过网页链接信息提取文档内部关系进行搜索结果重排可以提升检索系统的性能.通过Markov网络来展现文档内部关系,该网络更直观地解释了文档间的语义相关性,利用这种文档内部语义关系计算文档重要性对检索结果进行重排.根据文档分布特征阐述了Markov文档网络的构造算法,讨论了Top-k及其相关文档的重要性评分算法,修正初始检索的文档评分.通过这种方式,既保持了文档图的查询相关性,又丰富了文档内部关系,扩大了重排序范围.实验表明,在多个标准文档集上基于Markov网络的结果重排技术对检索性能有较大的稳定提升.

    关键词: 信息检索   Markov网络   结果重排  

    基金:

    国家自然科学基金(61201456)

     

     

    Document re-ranking based on Markov network

    CAO Ying   TU Wei   GAN Lixin  

    Information Center, Jiangxi University of Science and Technology, Ganzhou 341000,P.R.China   Center of Arts Complex Lab, Jiangxi Science & Technology Normal University, Nanchang 330038 ,P.R.China   Key Lab of Optic-electronic & Communication, Jiangxi Science & Technology Normal University, Nanchang 330038 ,P.R.China  

    Abstract:

    Keywords:

    [1]RIJSBERGEN van.A new theoretical framework for information retrieval[C]//In Proceedings of 1986 ACM Conference on Research and Development in Information Retrieval.Italy:Pisa,1986:194-200.

    [2]HE Ben,OUNIS Ladh.Studying Query Expansion Effectiveness[J].Advance in Information Retrieval,2009,5578:611-619.

    [3]MA Yunlong,LIN Hongfei,JIN Song.A RevisedSimRank Approach for query expansion[J].Information Retrieval Technology,2010,6458:564-575.

    [4]CARPINETO C,ROMANO G.A survey of automatic query expansion in information retrieval[J].Journal of ACM Computing Surveys,2012,44(1):3-6.

    [5]CROFT B.A cluster based resampling method for pseudo-relevance feedback[C]//Proceeding s of the 31 st annual international ACM SIGIR conference on Research and development in information retrieval.Singapore:ACM.2008:235-242.

    [6]KURLAND O,LEE L.PageRank without hyperlinks:Structural re-ranking using links induced by language models[J].Information Processing and Management,2010,28(4):1-14.

    [7]YE Z,HUANG J,LIN H.Incorporating rich features to boost information retrieval performance:A SVM-regression based re-ranking approach[J].Expert Systems with Applications,2011,38 (6):7569-7574.

    [8]PAGE L,BRIN S.The PageRank Citation Ranking:Bringing Order to the Web[EB/OL].(2008-12-28)[2013-01-02].,edu:8090/422/.

    [9]曹瑛,王明文,陶红亮.基于Markov网络的检索模型[J].山东大学学报:理学版,2006,3 (41):126-130.CAO Ying,WANG Mingwen,TAO Hongliang.Information retrieval model based on Markov Network[J].Journal of Shandong University:Natural Science Edition,2006,3(41):126-130.

    [10]左家莉.信息检索中Markov网络图模型研究[D].江西:江西财经大学,2011.ZUO Jiali.The Study of Markov Network Graph Model in Information Retrieval[D].Jiangxi:Jiangxi University of Finance and Economic,2011.

    [11]WANG Xuanhui,FANG Hui,ZHAI Chengxiang.A study of methods for negative relevance feedback[C]//Proceeding s of the 31st annual international ACM SIGIR conference on Research and development in information retrieval.Singapore:ACM.2008:219-226.

    [12]ROBERTSON S,WAKER S.Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval[EB/OL].(2008-07-12)[2013-02-01].


      本文关键词:基于Markov网络的结果重排技术,由笔耕文化传播整理发布。



    本文编号:209269

    资料下载
    论文发表

    本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/209269.html


    Copyright(c)文论论文网All Rights Reserved | 网站地图 |

    版权申明:资料由用户fe0ea***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com