基于非特定人的语音识别前端处理技术的研究
[Abstract]:In recent years, with the continuous development of artificial intelligence, speech recognition technology has gradually moved from the research stage to the practical application stage, is a potential research value of the technology. However, in the research of speech recognition system, how to optimize the system performance is still the focus of discussion. In this paper, the basic structure and principle of the whole system are introduced in detail, some key technologies of speech recognition system are deeply studied, and corresponding improved algorithms are put forward. The general flow of speech recognition includes speech endpoint detection, feature parameter extraction, speech model training and recognition algorithm. Firstly, some key technologies of speech recognition system, including speech signal preprocessing, endpoint detection and feature extraction algorithm, are studied in this paper. In the environment of low SNR noise, two key techniques of signal endpoint detection and pitch period extraction are proposed. They are: an endpoint detection algorithm based on empirical mode decomposition (EMD) and improved wavelet entropy and an algorithm of pitch period extraction based on wavelet packet transform weighted autocorrelation and compared with the original algorithm. Secondly, the Mel cepstrum coefficient is selected as the feature parameter, and the extraction process of MFCC feature parameter is studied carefully, and a feature parameter -WPTMFCC for anti-noise speech based on wavelet packet transform is proposed. The experimental results show that the new feature parameters can improve the robustness of the system, and the recognition rate in different SNR noise environments is higher than that of the traditional LPCC feature parameters and MFCC feature parameters. In this paper, a recognition system based on Hidden Markov Model (hmm) is built on MATLAB platform. The simulation results show that the improved endpoint detection technique and the characteristic parameters of WPTMFCC can improve the recognition rate of the system. Finally, the GUI interface of the recognition system is designed, through which the speech in the speech database can be recognized and demonstrated in real time.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN912.34
【参考文献】
相关期刊论文 前10条
1 张思阳;徐敏强;王日新;高晶波;;EMD与样本熵在往复压缩机气阀故障诊断中的应用[J];哈尔滨工程大学学报;2014年06期
2 王琳;李成荣;;一种基于自适应谱熵的端点检测改进方法[J];计算机仿真;2010年12期
3 赵毅;尹雪飞;陈克安;;一种新的基于倒谱的共振峰频率检测算法[J];应用声学;2010年06期
4 郑继明;王劲松;;语音基音周期检测方法[J];计算机工程;2010年10期
5 李宏梅;伍小芹;;有关语音识别技术的研究[J];现代电子技术;2010年08期
6 陈磊;吴小培;吕钊;;基于线性预测与归一化互相关的基音检测[J];电子测量技术;2009年10期
7 张军;李学斌;;一种基于DTW的孤立词语音识别算法[J];计算机仿真;2009年10期
8 刘建新;曹荣;赵鹤鸣;;一种LPC改进算法在提取耳语音共振峰中的应用[J];西华大学学报(自然科学版);2008年03期
9 胡瑛;陈宁;;基于小波变换的清浊音分类及基音周期检测算法[J];电子与信息学报;2008年02期
10 张玲华;郑宝玉;杨震;;基于LPC分析的语音特征参数研究及其在说话人识别中的应用[J];南京邮电学院学报;2005年06期
相关硕士学位论文 前10条
1 廖振东;基于DTW的孤立词语音识别系统研究[D];云南大学;2015年
2 王一蒙;语音识别关键技术研究[D];电子科技大学;2015年
3 刘方洲;语音识别关键技术及其改进算法研究[D];长安大学;2014年
4 李W毞,
本文编号:2128734
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2128734.html