2D转3D视频系统中运动检测算法的研究及实现
[Abstract]:With the development of television technology, 3D video display technology has gradually come into people's view, people can watch stereoscopic images on the screen, and get rapid development in military, medical, education and other fields. One way to get 3D video is to convert 2D video to 3D video directly through 2D to 3D video technology. This method is widely studied because of its low cost, short period and abundant 2D video resources. In 2D to 3D video system, the key is depth map extraction. This paper mainly studies the method of depth map extraction based on motion detection, which is a kind of depth assignment method which regards moving target as foreground. This hypothetical method is consistent with the habit of viewing and has high efficiency. The result of moving target detection is the core of this method. However, most of the results of motion detection are greatly affected by the environment. If there is a dynamic background in the scene, there will be a large number of false detection points, and if the moving object is moving too fast, it will produce a ghost image. The shaded light of moving object will also detect the shadow area as moving target. In view of the above possible problems, this paper proposes an accurate and effective motion detection algorithm. A background model based on temporal and spatial information is proposed to solve the problem of dynamic background in ghosts and scenes. This kind of background model can effectively remove most of the false detection points. The method of reducing missed detection points is to combine a "or" type of three frame difference method in the process of scene segmentation, and to combine the segmentation result with the significant detection result, which can further remove the false detection points. Finally, shadow area is removed based on HSV color space. The software layer of the algorithm is verified on the platform of Matlab and Opencv. The experimental results show that the algorithm can get correct motion detection results, and the quantization index f-measure can reach more than 0.80.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN948.6;TP391.41
【参考文献】
相关期刊论文 前10条
1 庞硕;张远;曲熠;;3D电视系统的构成及发展[J];电视技术;2013年02期
2 马建设;夏飞鹏;苏萍;潘龙法;;数字全息三维显示关键技术与系统综述[J];光学精密工程;2012年05期
3 洪艳;陈佩怡;;3D电影的现状与问题研究[J];重庆邮电大学学报(社会科学版);2012年02期
4 郝毫刚;陈家琪;;基于五帧差分和背景差分的运动目标检测算法[J];计算机工程;2012年04期
5 王琼华;王爱红;梁栋;邓欢;;裸视3D显示技术概述[J];真空电子技术;2011年05期
6 李乐;张茂军;熊志辉;徐玮;;基于内容理解的单幅静态街景图像深度估计[J];机器人;2011年02期
7 Abbas KOOCHARI;Mohsen SORYANI;;Exemplar-based video inpainting with large patches[J];Journal of Zhejiang University-Science C(Computer & Electronics);2010年04期
8 张凯舟;刘鹏;姚庆栋;;基于自适应搜索模板的快速运动估计算法[J];中国图象图形学报;2009年11期
9 鞠芹;安平;张倩;张兆扬;;高质量的虚拟视点图像的绘制方法[J];电视技术;2009年09期
10 杨铀;郁梅;蒋刚毅;;交互式三维视频系统研究进展[J];计算机辅助设计与图形学学报;2009年05期
相关博士学位论文 前1条
1 李乐;面向3DTV应用的视频2D转3D技术研究[D];国防科学技术大学;2012年
相关硕士学位论文 前6条
1 赵兴朋;视频图像2D转3D算法研究及硬件实现[D];中国海洋大学;2012年
2 关珊珊;基于FPGA的图像显示技术研究[D];南京航空航天大学;2012年
3 徐萍;基于深度图像绘制的二维转三维视频关键技术研究[D];南京邮电大学;2011年
4 辛海涛;基于运动目标检测的行人计数方法[D];河北工业大学;2011年
5 程鸿亮;基于FPGA的实时图像边缘检测系统的研究[D];长安大学;2009年
6 杜晶晶;智能视频监控中运动目标检测与跟踪算法研究[D];西南交通大学;2009年
,本文编号:2180425
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2180425.html