LTE中广播多播服务的资源分配算法研究
[Abstract]:With the vigorous development of mobile internet, the proportion of multimedia services in mobile communication services is increasing. Efficient use of multimedia broadcast multicast technology (MBMS) to transmit multimedia services has become a research hotspot. MBMS technology can greatly alleviate the growing demand for resources through wireless resource sharing. The research of S resource allocation algorithm can further improve the resource utilization of multicast system and the user experience of multicast users. LTE MBMS includes single frequency network (MBSFN) and single cell transmission mode, which have different application scenarios. This paper studies the resource allocation algorithm based on single cell mode. Link physical resources and resource allocation framework are studied. The network architecture, channel support, protocol stack, transmission mode and service flow of MBMS in LTE are analyzed. The classical unicast resource allocation algorithms, including single-rate algorithm and multi-rate algorithm, are compared with the classical unicast resource allocation algorithms in LTE. This paper designs a dynamic modulation coding strategy (MCS) selection scheme and a resource allocation algorithm based on Kuhn-Munkres algorithm to overcome the shortcomings of the current single-rate resource allocation algorithm, and designs a priority-based hierarchical multi-rate MBMS resource allocation algorithm PLRA to overcome the shortcomings of the current multi-rate allocation algorithm. The real platform can not meet the simulation requirements, so a system-level simulation platform for MBMS based on Python is designed and implemented. Dynamic MCS selection scheme adjusts the average packet loss rate of each multicast group, which can effectively improve the system throughput under the given packet loss rate threshold. Three single-rate resource allocation algorithms are proposed, including D-BKM, D-IKM and D-MaxKM.D-BKM. Kuhn-Munkres algorithm is used to allocate resource blocks with minimum rate guarantees, and then the maximum throughput principle is used for the second allocation. D-MaxKM algorithm is the inverse of D-BKM algorithm. Firstly, the maximum throughput principle is used to allocate resource blocks, then the redundant resource blocks are searched from the allocated resource blocks, and the Kuhn-Munkres algorithm is used to allocate the redundant resource blocks and the multicast groups which do not meet the minimum rate requirements. The algorithm PLRA is divided into two stages: primary allocation and extended layer allocation. In the primary allocation, multicast groups with fewer resource blocks are satisfied, and fairness factor is introduced to improve the rate fairness when the system capacity is insufficient. In the extended layer allocation, a priority calculation method is designed to give priority to resource blocks allocation. The system-level simulation platform of MBMS based on Python language can be designed and implemented to verify the proposed algorithm in a variety of scenarios, such as system throughput, packet loss rate, rate satisfaction, rate fairness and frequency. Simulation results show that the three algorithms designed in Chapter 3 can improve the system throughput under the condition of guaranteeing the lowest traffic rate. Among the three algorithms, D-MaxKM algorithm has the largest throughput, while D-IKM algorithm can effectively improve the efficiency of D-BKM algorithm by estimating the number of resource blocks and D-MaxKM algorithm has the highest throughput. The performance of IKM algorithm is almost the same as that of D-BKM algorithm. In the fourth chapter, the improved PLRA algorithm can effectively improve the throughput and fairness of Hierarchical Multicast System at the expense of a small amount of spectral efficiency.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN929.5
【相似文献】
相关期刊论文 前10条
1 史琰;刘增基;盛敏;;一种保证负载均衡的网络资源分配算法[J];西安电子科技大学学报;2005年06期
2 张永晖;林漳希;刘建华;梁泉;;用于多宿容迟移动网络的实时资源分配算法[J];微电子学与计算机;2013年03期
3 滕颖蕾;宋梅;刘媛媛;杨睿哲;宋俊德;;基于网络编码的用户协作博弈资源分配算法[J];北京邮电大学学报;2011年03期
4 ;下期要目[J];广东通信技术;2012年03期
5 张皓;周志杰;惠毅;赵陆文;伍云;;一种基于合作博弈框架的跨层资源分配算法[J];系统仿真学报;2009年23期
6 李云;贾雯;马亚飞;朱德利;;联合资源分配算法在协作系统中的应用[J];计算机应用研究;2014年07期
7 杨安锦;郝林;李彤;李经磊;;软件演化过程中的资源管理研究[J];云南大学学报(自然科学版);2007年S2期
8 曲桦;王贺男;赵季红;;多虚拟业务平面中的动态资源分配算法[J];北京邮电大学学报;2013年05期
9 梁靓;冯钢;;两跳中继网络的资源分配算法[J];电子科技大学学报;2013年06期
10 胡莹;黄永明;俞菲;杨绿溪;;基于能效优化的用户调度与资源分配算法[J];电子与信息学报;2012年08期
相关会议论文 前6条
1 傅晓;田廷剑;王军;李少谦;;一种新的多用户MIMO-OFDM资源分配算法[A];2008年中国西部青年通信学术会议论文集[C];2008年
2 曲桦;梁思远;赵季红;;基于容量的相对最小影响资源分配算法[A];中国通信学会通信软件技术委员会2009年学术会议论文集[C];2009年
3 李强;梁炜;;面向无线HART网络的动态资源分配算法研究[A];2008’“先进集成技术”院士论坛暨第二届仪表、自动化与先进集成技术大会论文集[C];2008年
4 黄国刚;何加铭;张青波;;WiMAX资源分配算法研究[A];浙江省电子学会2009学术年会论文集[C];2009年
5 樊庆利;郝丽贤;;一种GPRS资源分配算法及其实现[A];2012全国无线及移动通信学术大会论文集(下)[C];2012年
6 蔡木林;蔡跃明;;OFDM中继信道节点选择与资源分配算法[A];第十四届全国信号处理学术年会(CCSP-2009)论文集[C];2009年
相关博士学位论文 前5条
1 严俊坤;认知雷达中的资源分配算法研究[D];西安电子科技大学;2015年
2 金慈航;OFDM系统中基于对偶分解理论的资源分配算法[D];中国科学技术大学;2008年
3 李松;多天线多播系统资源分配算法研究[D];北京邮电大学;2012年
4 徐雷;OFDM无线网络资源分配技术研究[D];南京航空航天大学;2012年
5 刘慎发;分布式天线通信系统中的关键技术研究[D];北京邮电大学;2007年
相关硕士学位论文 前10条
1 梁蓝;LTE-A系统基于干扰减小的D2D通信资源分配算法研究[D];西南交通大学;2015年
2 张旭;蜂窝网络中D2D通信的联合模式选择和资源分配算法研究[D];长安大学;2015年
3 岳元贞;基于信用度的云媒体资源分配算法[D];中国海洋大学;2015年
4 蔡雪佳;移动蜂窝网络中D2D通信资源分配算法研究[D];东南大学;2015年
5 崔宇轩;一种基于定价的卫星网络选路及带宽资源分配算法[D];西安电子科技大学;2015年
6 单政扬;802.11ax D2D干扰分析及资源分配算法研究[D];西南交通大学;2016年
7 牛红威;基于WFRFT的混合载波系统的资源分配算法研究[D];哈尔滨工业大学;2016年
8 刘应涛;LTE中广播多播服务的资源分配算法研究[D];电子科技大学;2016年
9 江爱珍;CRAHNs网络中基于Massive MIMO的资源分配方案研究[D];南京邮电大学;2016年
10 王婷婷;网络资源分配算法研究[D];华东师范大学;2010年
,本文编号:2182974
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2182974.html