混沌噪声背景下微弱脉冲信号的检测与恢复
[Abstract]:Weak signal is a weak signal which can not be detected by traditional and general methods. The so-called weak signal is not only that the amplitude of the signal is very small, but mainly refers to the signal which is submerged by noise and has low signal-to-noise ratio (SNR). Weak signal detection is based on the methods of electronics, information theory and probability statistics to study the characteristics of the measured signal, analyze the causes of the noise, detect and estimate the weak signal submerged by the background noise. Weak signal detection is an important means for people to obtain information. It is widely used in many fields. With the development of science and technology, the need for weak signal detection and recovery is becoming more and more urgent. Chaotic (Chaos) is a seemingly irregular motion. In deterministic nonlinear systems, stochastic behavior can occur without any additional random factors. It widely exists in many fields such as meteorology, hydrology, communication and so on. With the development and application of chaos theory in various fields, the detection and estimation of weak pulse signal using chaos theory has become a development trend. The detection and recovery of weak signals submerged in chaotic noise background signal, especially the weak pulse signal under chaotic noise background, are of great significance to signal processing in theory and practice. In this paper, based on the short-term predictability of chaotic signals and their sensitivity to small perturbations, the phase space reconstruction of observed signals is carried out, and a local linear autoregressive model (Local Linear Autoregressive model LLAR) is established for single-step prediction, and the prediction errors are obtained. The hypothesis test method is used to detect whether the observation signal contains weak pulse signal from the prediction error. Then, the single point jump model of weak pulse signal is established, and the local linear autoregressive model is fused to form a bilocal linear model, (Double Local Linear model-DLL), which optimizes the mean square prediction error of the minimized DLL model. The parameters of the model are estimated by backward fitting algorithm, and the weak pulse signal under the background of chaotic noise is finally recovered. Finally, based on the typical chaotic time series Lorenz system, the simulation results show that the proposed model has a good effect on the detection and recovery of weak pulse signal in chaotic noise background.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN911.23
【参考文献】
相关期刊论文 前10条
1 汪祥莉;王文波;;Harmonic signal extraction from noisy chaotic interference based on synchrosqueezed wavelet transform[J];Chinese Physics B;2015年08期
2 张强;行鸿彦;;基于EMD方差特性的混沌信号自适应去噪算法[J];电子学报;2015年05期
3 李梦平;许雪梅;杨兵初;丁家峰;;A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection[J];Chinese Physics B;2015年06期
4 魏德志;陈福集;郑小雪;;基于混沌理论和改进径向基函数神经网络的网络舆情预测方法[J];物理学报;2015年11期
5 郑红利;行鸿彦;徐伟;;混沌背景中微弱信号检测的回声状态网络方法[J];信号处理;2015年03期
6 行鸿彦;张强;徐伟;;混沌海杂波背景下的微弱信号检测混合算法[J];物理学报;2015年04期
7 行鸿彦;朱清清;徐伟;;一种混沌海杂波背景下的微弱信号检测方法[J];物理学报;2014年10期
8 苏理云;殷勇;李晨龙;;应用多项式系数统计模型的人口预测[J];重庆理工大学学报(自然科学);2014年04期
9 马尽文;青慈阳;;对角型广义RBF神经网络与非线性时间序列预测[J];信号处理;2013年12期
10 陈军;;基于混沌理论的检测系统应用研究综述[J];甘肃高师学报;2013年02期
相关博士学位论文 前2条
1 张雪锋;混沌序列生成技术及其若干应用研究[D];西安电子科技大学;2011年
2 袁继敏;基于混沌和神经网络的时域参数测试研究及其在示波器中的应用[D];电子科技大学;2009年
相关硕士学位论文 前10条
1 张亚璇;混沌雷达波形设计及弱信号检测研究[D];电子科技大学;2015年
2 李晨龙;基于自回归模型的混沌时间序列预测与应用[D];重庆理工大学;2015年
3 蔡志全;强噪声背景下微弱信号检测与处理方法研究[D];内蒙古科技大学;2014年
4 崔笑笑;混沌时间序列处理及其应用[D];山东大学;2012年
5 张敏;基于混沌理论的微弱信号检测原理及其在金属探测器中的应用研究[D];山东大学;2011年
6 郑皓洲;混沌同步及在雷达中的应用研究[D];电子科技大学;2011年
7 王丽霞;混沌弱信号检测技术[D];哈尔滨工程大学;2011年
8 魏新建;基于Duffing混沌振子的弱信号检测方法[D];天津大学;2010年
9 李继永;基于混沌振子的微弱信号检测技术研究[D];电子科技大学;2010年
10 刘洋;混沌背景中信号提取的相空间投影法[D];吉林大学;2009年
,本文编号:2196883
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2196883.html