基于物联网和大数据的工厂能耗分析平台的研究
[Abstract]:With the introduction of the concept of industry 4.0, intelligence has become an inevitable trend of industrial development. The Internet of things, which combines communication technology, network technology and sensor technology, will provide data support for industrial intelligence. In order to meet the demand of industrial intelligence, the number of Internet of things equipment in the industrial production environment will gradually increase, and the amount of data generated by the industrial Internet of things will also become larger and larger. How to deal with mass Internet of things data in industrial production effectively becomes an urgent problem. In order to meet the urgent need of big data processing technology in the industrial field, this paper carries out systematic research and architecture design combined with the characteristics of industrial big data, and realizes a modular and portable big data analysis platform for industrial energy consumption. First of all, this paper briefly describes the development of wireless sensor network and big data, and analyzes the urgent needs of big data related technologies in industrial production and management. The related technologies used in the energy consumption big data analysis platform are briefly introduced, and then, the requirements of the users for the data query function and the big data analysis function of the energy consumption big data analysis platform are analyzed in detail. Based on the background of industrial production environment and industrial big data characteristics, the system architecture of energy consumption big data platform is studied, designed and demonstrated. Finally, the system is designed as sensor network layer. Then, the deployment and implementation of the sensor network layer, and the selection, deployment and optimization of the highly usable and extensible big data platform layer suitable for industrial production environment are completed. Then, the necessity and feasibility of the middleware layer are studied and demonstrated with reference to the existing conditions and user requirements of the factory, and the modularization design and implementation of the middleware layer are completed. Finally, on the basis of the big data platform layer, Through the task scheduling and function connection of middleware layer, the statistical query function of energy consumption data, the real-time query function and the data analysis function based on complex model are realized. Finally, the design scheme of energy consumption big data analysis platform is verified in the production environment, and the energy saving strategy is put forward by analyzing the energy consumption data.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.5;TP311.13
【参考文献】
相关期刊论文 前10条
1 张红;王晓明;曹洁;马彦宏;郭义戎;王a\;;Hadoop云平台MapReduce模型优化研究[J];计算机工程与应用;2016年22期
2 高见文;薛行贵;罗杰;姜源;吴启武;;基于迭代式MapReducede的海量数据并行聚类算法研究[J];中国科技论文;2016年14期
3 吴卉男;;大数据系统和分析技术综述[J];信息记录材料;2016年03期
4 冷建飞;高旭;朱嘉平;;多元线性回归统计预测模型的应用[J];统计与决策;2016年07期
5 洪万帆;苏淑靖;;基于无线传感器网络的数据采集系统设计[J];电子器件;2016年01期
6 王庆福;;线性回归算法在个性化推荐中应用研究[J];电脑编程技巧与维护;2015年23期
7 李振;贾瑞玉;;一种改进的K-means蚁群聚类算法[J];计算机技术与发展;2015年12期
8 程双江;李世平;邬肖敏;郑堂;;基于改进混合核SVM的非线性组合预测[J];计量技术;2015年10期
9 武霞;董增寿;孟晓燕;;基于大数据平台hadoop的聚类算法K值优化研究[J];太原科技大学学报;2015年02期
10 刘旺锁;王平波;顾雪峰;;混合高斯参数估计的两种EM算法比较[J];声学技术;2014年06期
相关博士学位论文 前1条
1 花小朋;非平行超平面分类器算法研究[D];中国矿业大学;2015年
相关硕士学位论文 前2条
1 童冰彬;基于分布式海量数据处理的协作无线传感器网络架构[D];南京邮电大学;2015年
2 朱敏明;基于YARN框架下并行化计算的研究[D];西北师范大学;2015年
,本文编号:2197289
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2197289.html