基于独立矢量分析的模分复用系统解复用技术研究
[Abstract]:With the acceleration of social informationization, the arrival of mobile Internet and big data era, bandwidth-consuming services such as Internet of Things, cloud computing, large data centers, high-definition video and multimedia real-time services are growing rapidly, which makes the global network data flow grow rapidly at a rate of nearly 60%. However, due to the inherent nonlinear effect in single-mode optical fiber transmission medium and the spontaneous emission noise of amplifier, the capacity of single-mode optical fiber communication system is getting closer and closer to Shannon's limit. In order to realize the expansion of backbone optical network, a few-mode optical fiber is proposed. Modular division multiplexing (DMA) technology, which uses orthogonal modes as information transmission carriers, doubles the transmission capacity of optical communication systems. However, due to the existence of mode random coupling, differential mode group delay and other damage factors, the received signal of transmission system crosstalk is serious, in order to achieve less. For the long-distance and large-capacity transmission of mode-division multiplexing (MODM) systems, effective digital signal processing (DSP) algorithms should be adopted at the receiver to realize the demultiplexing of the transmitted signals. VA) Blind source separation (BSS) algorithm is used to separate the received signals, and IVA algorithm is applied to the intensity modulation direct detection mode division multiplexing system and the modulation format is QPSK coherent detection mode division multiplexing system respectively. Firstly, based on the Maxwell equations, the mode propagation characteristics and cut-off conditions in the medium of small-mode fiber transmission are deduced. The damage factors of the transmission links of small-mode fiber, such as mode random coupling, differential mode group delay, are introduced in detail, and the influence of the damage factors on the transmission signal is analyzed in time domain and frequency domain respectively. Secondly, the basic principle and flow of the independent vector analysis algorithm are introduced in detail. IVA algorithm transforms the time domain convolution mixed signal into frequency domain, and separates each frequency point instantaneously in frequency domain to realize the mixed signal. In the process of crosstalk removal, the data of different frequency points of the same source signal are processed as vectors in frequency domain, and the order uncertainties between the frequency bands are solved while the data of different frequency points of the same source signal are separated instantaneously in each frequency band. In addition, constraints on the applicable conditions of the IVA algorithm show that the transmission signal in the modular division multiplexing system can satisfy the basic conditions of the IVA algorithm. At the same time, the amplitude uncertainty in the IVA algorithm and its solution are introduced. The simulation system of mode division multiplexing (MDM) based on intensity modulation direct detection (IM/DD) is built, and the overlapped signals of the receiving end of IM/DD MDM system are demultiplexed by IVA algorithm. The results show that the IVA algorithm has good demultiplexing performance without additional frequency sorting. Finally, the IVA algorithm is applied to the modular multiplexing system with QPSK modulation format, and the influence of the selection of nonlinear functions in the updating formula of the separation matrix of the IVA algorithm on the demultiplexing performance of the mixed QPSK signal is investigated. The performance of the IVA algorithm is analyzed and compared with that of the Frequency-Domain Independent Component Analysis (FD-ICA). The simulation results show that the performance of the IVA algorithm is equivalent to that of the Frequency-Domain Independent Component Analysis (FD-ICA).
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.11
【相似文献】
相关期刊论文 前10条
1 周效东,赵长春,汤伟中,周文;干涉型光纤传感器复用系统的消偏振衰落技术[J];中国激光;1998年04期
2 陈育平;中国数字用户环路复用系统的应用与市场[J];世界电信;1994年06期
3 王竞;李道本;;时频二维重叠复用系统[J];电子与信息学报;2008年05期
4 ;超短波调频发射机复用系统[J];广播与电视技术;1974年02期
5 汪士宽;;序列在遥测复用系统中的应用[J];遥测技术;1980年03期
6 王浩;孙艳华;李道本;;时间频率二维重叠复用系统及其快速检测算法[J];北京工业大学学报;2011年01期
7 易涛;张家森;龚旗煌;;亚波长选择性的全息移位复用系统[J];量子电子学报;2007年01期
8 吴红艳;肖倩;吴媛;卞庞;;基于载波调制的光纤振动传感复用系统[J];光学仪器;2014年01期
9 王铁城;刘铁根;万木森;兰寿峰;姚晓天;;偏振复用系统中解复用端的偏振控制算法[J];光学与光电技术;2008年06期
10 王浩;孙艳华;李道本;;时频混合重叠复用系统的快速检测算法[J];电子科技大学学报;2010年04期
相关博士学位论文 前2条
1 闫李;模分复用系统解复用技术研究[D];吉林大学;2016年
2 叶梦渊;硅基模式相关器件及其在多维复用系统中的应用[D];华中科技大学;2016年
相关硕士学位论文 前9条
1 徐权辉;模式复用系统的均衡技术研究[D];北京交通大学;2016年
2 杜书;前端编码复用系统建设方案分析与改造技术的研究[D];天津大学;2015年
3 赵圆圆;模式复用系统中的模式耦合问题及均衡技术研究[D];北京交通大学;2017年
4 关丽杨;基于独立矢量分析的模分复用系统解复用技术研究[D];吉林大学;2017年
5 宫彩丽;模式分集复用系统的频域均衡技术研究[D];吉林大学;2017年
6 蔡璐;少模模式复用系统与模式耦合效应的研究[D];北京邮电大学;2014年
7 刘景利;MIMO空间复用系统若干关键技术研究[D];北京交通大学;2009年
8 田坤;基于FPGA的双路视频复用系统的设计与实现[D];电子科技大学;2007年
9 侯建华;过饱和正交复用系统:传统正交复用的有效扩展[D];大连理工大学;2014年
,本文编号:2207818
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2207818.html