植入式医疗器械中的差分分形天线研究
[Abstract]:Implantable medical devices can obtain the relevant data of human physiological parameters more accurately and conveniently than external devices. Therefore, the application of implantable medical devices in the field of medical diagnosis, monitoring and treatment has attracted more and more attention. Implantable antenna is the key device for wireless communication of implantable medical devices to realize wireless transmission of physiological and medical data collected by medical sensors to the receiving equipment in vitro. Due to the special working environment of the implanted antenna, it presents new challenges to the reduction of antenna size, the improvement of anti-jamming ability and the prolongation of service life. This paper is supported by the National Natural Science Foundation of China (61372008) and the Guangdong Science and Technology Project (2014A010103014A2015B010101006). The main work of this research is as follows: the special working environment of the implanted antenna requires us to take the human body's influence into account when we design the antenna at the beginning. In this study, the simple human body model and the high precision human body model were established respectively. (1) the differential fractal implanted antenna working in the MICS band: the differential feed technology enables the antenna to be directly and directly implanted with the implanted medicine. (1) the differential Fractal Implant Antenna working in the MICS band. A differential circuit link in a therapeutic device, The suppression ability of common-mode noise is improved. The antenna is miniaturized by means of fractal curve and high dielectric constant substrate. The size of antenna is 9.3 脳 9.3 脳 0.635 mm3.. The antenna covers the (MICS) band of medical and implantable communications services with a bandwidth of 67 MHz (374,441 MHz).) In this paper, the process of high precision modeling of human body is introduced, and the far-field gain of antenna and the specific absorptivity (SAR) value related to human safety are analyzed. In order to further reduce the power consumption of the implanted device and prolong its life cycle, this paper based on the single frequency antenna, An implantable dual-frequency antenna is designed through improved and optimized research. (2) the differential fractal dual-frequency antenna used in implantable medical devices: the antenna covers the MICS band and the 2.44GHz industrial, scientific and medical (ISM) band. The dual-frequency characteristic of the antenna allows the implanted device to enter sleep mode to reduce power consumption. When communication is needed, a wake-up signal can be sent through the ISM band to enable the device to enter working mode. In this paper, the working principle of antenna is analyzed, the parameters of quantitatively studying antenna noise suppression ability are given, and the principle of antenna obtaining high noise suppression ability is analyzed. The influence of key parameters on antenna performance is studied. The radiation performance of antenna and the link budget to evaluate antenna communication performance are analyzed. The antenna is fabricated, and the measurement results are in good agreement with the simulation results, which verify the accuracy of the theoretical design. (3) differential implanted dual-band wideband fractal antenna: because of the antenna implanted into different electrical characteristics of the tissue will produce frequency offset, In order to improve the robustness of the implanted antenna and reduce the influence of frequency offset on its performance, this paper extends the bandwidth of the antenna by realizing near the double resonant frequency point. The bandwidth of the antenna in the MICS and ISM bands is 22. 1% and 41. 1%, respectively. In this paper, the evolution process of the antenna, the relative size of the antenna, the gain SAR and other parameters are analyzed. The relationship between the input power of the antenna and the maximum communication rate is studied, and the temperature distribution of the human body when the antenna works at the desired communication rate is given. The results show that differential antenna plays an important role in improving system integration, suppressing common-mode noise and reducing power consumption. Fractal structure has obvious advantages in antenna miniaturization. The research of differential fractal antenna can further improve the integration and noise suppression ability of the system, reduce the power consumption of the system, and reduce the size of the antenna.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN822;TH789
【相似文献】
相关期刊论文 前10条
1 刘嘉;孙英杰;;“植入式”教育培训模式初探[J];中国电力教育;2009年20期
2 郑敬;;神经袖套电极的募集数据:可植入式刺激器设计的参考规范[J];国外医学.生物医学工程分册;1989年06期
3 楼正国;周玲;;植入式遥测和电源[J];遥测遥控;1990年02期
4 王保华;王承华;;体内植入电子系统(八) 第八讲 植入式遥测系统(一)[J];中国医疗器械杂志;1990年06期
5 陈其成;;植入式装置的体内外双向通信方式[J];电子世界;2012年24期
6 王保华;袁冲明;;体内植入电子系统(二)[J];中国医疗器械杂志;1989年06期
7 王保华;;体内植入电子系统(一)[J];中国医疗器械杂志;1989年05期
8 韦晓娟;刘静;周一欣;;人体动能驱动的可植入式电磁感应供电方法研究[J];科技导报;2009年06期
9 沙洪;王妍;任超世;;用于动物实验的植入式神经刺激器[J];生物医学工程与临床;2006年S1期
10 高跃明;潘少恒;麦炳源;韦孟宇;杜民;;植入式医学传感器体内通信的建模与分析[J];仪器仪表学报;2012年12期
相关会议论文 前5条
1 田运涛;高跃明;潘少恒;麦炳源;韦孟宇;杜民;;骨骼对植入式人体通信传输特性的影响[A];2012医疗仪器与民众健康学术研讨会论文集[C];2012年
2 李路明;郝红伟;;植入式神经刺激器的研究应用现状与发展趋势[A];自主创新与持续增长第十一届中国科协年会论文集(3)[C];2009年
3 吕学士;;用于可植入式医疗电子的无线CMOS SoCs[A];中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集[C];2010年
4 陆才德;吴胜东;黄静;裘丰;虞伟明;华永飞;卢长江;彭涛;杨志丰;;植入式胰胃吻合术临床应用探讨:75例报告[A];2012年浙江省外科学学术年会论文集[C];2012年
5 池菊芳;郭航远;彭放;周研;唐伟良;;家庭监测在植入式心脏电子装置中的应用[A];中华医学会第十五次全国心血管病学大会论文汇编[C];2013年
相关重要报纸文章 前10条
1 王雅丽;心动也能行动[N];中国计算机报;2007年
2 徐铮奎;植入式神经调节器发展前景可观[N];中国医药报;2007年
3 季伟;植入式传播“暗渡陈仓”[N];医药经济报;2007年
4 徐铮奎;型植入式神经调节器可无线充电[N];医药经济报;2007年
5 张化;植入式隐形眼镜[N];经济参考报;2003年
6 徐铮奎 编译;电子新技术催生植入式微型神经调节器[N];中国医药报;2007年
7 徐铮奎 编译;贵金属研究促植入式医疗器械发展[N];中国医药报;2007年
8 国讯;关注心脏血管内支架及植入式心脏起搏器使用风险[N];中国医药报;2013年
9 徐铮奎;启动刺激 终止病痛[N];医药经济报;2007年
10 本报特约撰稿 徐铮奎;植入式微电极类产品市场空间巨大[N];医药经济报;2014年
相关博士学位论文 前2条
1 刘昌荣;植入式天线在生物医疗中的应用研究[D];电子科技大学;2015年
2 芮岳峰;基于柔性MEMS的可植入人工面神经技术研究[D];上海交通大学;2014年
相关硕士学位论文 前10条
1 张子健;植入式血糖传感器标签数字基带处理器设计[D];复旦大学;2014年
2 汤辰飞;基于磁共振人体植入式无线传能系统研究[D];中国海洋大学;2015年
3 彭张柱;人体植入式无线传能及其智能充电管理系统的研究[D];中国海洋大学;2015年
4 李方红;人体植入式电子设备无线传能系统中的电磁辐射安全性研究[D];中国海洋大学;2015年
5 梁伟;植入式心脏起搏器安全性风险评价及控制措施研究[D];北京理工大学;2015年
6 刘辉;植入式医疗器械中的差分分形天线研究[D];华南理工大学;2016年
7 吴泽涛;用于移动医疗的植入式人体天线研究[D];华南理工大学;2016年
8 朱泽t,
本文编号:2209066
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2209066.html