当前位置:主页 > 科技论文 > 信息工程论文 >

基于局部场电位的动物转向解码研究

发布时间:2018-08-28 11:36
【摘要】:运动行为的神经信号解码研究是脑-机接口研究的重要内容,解码生物的运动意图,具有重要的理论与实际应用价值。微电极阵列记录到的信号包括锋电位信号(spike)和局部场电位信号(Local field potentials,LFP),关于spike信号的运动解码研究取得了一定成果,但是随着电极植入的时间增长,spike信号质量有所下降,而局部场电位具有长期解码稳定的特点,逐渐引起研究人员的关注。但是,大脑结构复杂,某一运动行为的执行可能由大脑多个脑区共同作用,运动意图在脑中的存在时间非常短暂,采集到的局部场电位为非平稳信号,且在记录的过程中不可避免的会引入噪声信号,这些都对解码特征的有效提取造成一定阻碍。在对大脑信息进行解码时,关键是确定出有效编码信息的时间及频率窗口,提取到利于解码的特征。本文以鸽子为研究对象,结合动物行为学方法与神经信号微电极阵列检测技术,采集了鸽子左转、直行、右转三个方向转向运动发生时NCL(Nidopallium Caudolaterale)脑区的LFP信号。对LFP信号特征提取方法进行分析,探讨鸽子运动转向时的LFP信号的特征变化,并用k近邻(k-Nearest Neighbor,kNN)方法对提取的特征进行分类,预测其运动方向。主要工作如下:1.对局部场电位信号的产生过程,局部场电位信号特性及相关噪声特性进行了分析,在此基础上比较了常用处理方法在LFP信号去噪中的优缺点,以及常用时域,频域时频域方法在特征提取方面的优缺点。2.采用了一种结合独立成分分析(Independent component analysis,ICA)与小波方法的特征提取方法,ICA方法能够去除各通道间的数据冗余,去除明显噪声的同时对有效编码信息最大程度的保留,之后利用时频特性特较好的小波方法进行特征提取,有效提取了运动转向发生时局部场电位的特征。3.完成了鸽子运动转向行为诱导训练及神经信号采集实验,利用本文的特征提取方法对局部场电位信号进行特征提取,并利用k近邻方法进行分类,正确率最高达到92.35%。又进一步对不同通道,单个特征,及不同时间窗提取的特征进行分类并统计正确率,探究比较好的解码特征形式。
[Abstract]:The study of neural signal decoding of motor behavior is an important part of brain-computer interface research. Decoding biological motion intention has important theoretical and practical application value. The signals recorded by microelectrode array include spike signal (spike) and local field potential signal (Local field potentials,LFP). Some achievements have been made in the study of motion decoding of spike signal, but the quality of spike signal has declined with the time of electrode implantation. The local field potential has the characteristics of long-term decoding stability, and gradually attracted the attention of researchers. However, the structure of the brain is complex, the execution of a certain motor behavior may be affected by multiple brain regions, the duration of the motor intention in the brain is very short, and the local field potential collected is a non-stationary signal. Noise signals will inevitably be introduced in the process of recording, which will hinder the efficient extraction of decoding features. When decoding the brain information, the key is to determine the time and frequency window of the effective coding information, and extract the features that are beneficial to the decoding. In this paper, pigeons were studied. The LFP signals in NCL (Nidopallium Caudolaterale) brain region were collected when pigeons turned left, straight and right, combined with animal behavior method and neural signal microelectrode array detection technique. The feature extraction method of LFP signal is analyzed, and the feature change of LFP signal when pigeon is moving and turning is discussed. The extracted feature is classified by k-nearest neighbor (k-Nearest Neighbor,kNN) method, and its motion direction is predicted. The main work is as follows: 1. The generation process of local field potential signal, the characteristics of local field potential signal and related noise characteristics are analyzed. On this basis, the advantages and disadvantages of common processing methods in LFP signal denoising are compared, as well as the common time domain. The advantages and disadvantages of time-frequency domain method in feature extraction. A new feature extraction method based on Independent component Analysis (Independent component analysis,ICA) and wavelet method is proposed, which can remove the data redundancy between the channels, remove the obvious noise, and keep the effective coding information to the maximum extent. After that, the feature extraction is carried out by wavelet method, which is especially good in time-frequency characteristic, and the feature of local field potential at the time of motion turn is extracted effectively. 3. The training of pigeon movement steering behavior and the experiment of nerve signal acquisition were completed. The feature extraction method of this paper was used to extract the feature of local field potential signal, and the k-nearest neighbor method was used to classify the local field potential signal. The highest correct rate was 92.35%. Furthermore, the features extracted from different channels, single features and different time windows are classified and the correct rate is counted to explore the better decoding feature form.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN911.7

【相似文献】

相关期刊论文 前2条

1 尚志刚;冯平艳;刘新玉;牛晓可;万红;;局部场电位γ频带能量对朝向调谐特性研究[J];郑州大学学报(工学版);2012年06期

2 ;[J];;年期

相关会议论文 前6条

1 杨岸超;刘焕光;陈宁;乔慧;白勤;张建国;;海仁酸致痫大鼠丘脑前核局部场电位研究[A];2011中华医学会神经外科学学术会议论文汇编[C];2011年

2 何伟;李亮;贲卉;高昕妍;荣培晶;朱兵;;微电极阵列记录耳针对癫痫大鼠行为学和场电位的影响[A];2011中国针灸学会年会论文集(摘要)[C];2011年

3 张昊;房敏;蒋诗超;艾健;程艳彬;吕宁;张玉秋;;推拿重手法对大鼠对侧脊髓背角C-纤维诱发场电位及痛行为的影响[A];中国神经科学学会第十届全国学术会议论文摘要集[C];2013年

4 王晓晖;杨威;原丽;李少凤;杨东;潘艳芳;祁金顺;;大鼠在体海马CA1区场电位引导新技术——刺激/记录/给药一体化装置的开发和应用[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年

5 吴江;舒丹;胡祁生;;电刺激坐骨神经诱发不同发育阶段大鼠脊髓背角场电位长时程增强现象[A];湖北省生理学会2007年度年会暨学术报告会论文集[C];2007年

6 徐淑梅;郑开俊;何津岩;仇晓菁;林来祥;;柴胡对癫痫模型电活动的调制[A];2001’全国药用植物与中药院士论坛及学术研讨会论文集[C];2001年

相关博士学位论文 前1条

1 马晓宇;内侧隔核神经元调制海马场电位节律[D];华东师范大学;2015年

相关硕士学位论文 前10条

1 巢珍;基于光学成像和神经电生理的脑功能研究[D];上海大学;2015年

2 郭宝强;基于Comsol的脑电信号分析模型的研究与应用[D];河北工业大学;2015年

3 董芳芳;基于局部场电位的动物转向解码研究[D];郑州大学;2016年

4 周立;基于局部场电位的脑机接口技术研究[D];浙江大学;2010年

5 刘加加;基于自适应滤波的局部场电位响应特征分析[D];郑州大学;2014年

6 孙雷;小脑皮质颗粒与分子层对面部刺激反应的场电位特征[D];延边大学;2014年

7 王疆;海马脑片诱发场电位的分析处理及其应用[D];浙江大学;2001年

8 陈静雅;时变自回归模型在清醒大鼠局部场电位特征分析中的应用[D];郑州大学;2014年

9 兰东军;基于EMD和互信息的局部场电位响应调谐特性分析[D];郑州大学;2014年

10 魏依娜;基于动物实验的脑—机接口研究—信号分析[D];浙江大学;2007年



本文编号:2209279

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2209279.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户015ad***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com