低可观测目标无源协同定位技术研究
[Abstract]:With the rapid development of stealth technology and low altitude penetration technology, radar detection environment is becoming more and more complex, which greatly affects the target detection and tracking performance of active radar. How to detect and track low observable targets in the background of strong clutter has become a key problem to be solved in the field of radar early warning. The passive cooperative positioning system is small in size, quiet in itself and strong in anti-jamming ability. Its spatial distribution can effectively improve the detection performance of the system to low observable targets. It has important military research significance and application value. Based on the passive cooperative positioning system, the detection and tracking of low observable targets is studied in this paper. The main innovations are as follows: firstly, the problem of track initiation and maintenance of single target in passive cooperative positioning system based on two base stations is discussed. A simulated annealing maximum likelihood probability data association algorithm is proposed. The logarithmic likelihood function is constructed by multi-frame measurement accumulation, and the improved simulated annealing algorithm is used to optimize the solution, and the sliding window batch processing technique is used to realize track maintenance. Simulation results verify the effectiveness of the proposed algorithm. Secondly, a multi-base station passive co-location method based on the maximum likelihood probability and multiple assumptions of genetic algorithm is proposed to solve the problem of single structure and poor target detection performance of the dual-base station passive co-location system. The method is optimized by genetic algorithm, and the multi-base station information is fused, and the sliding window batch processing is used to realize track maintenance. Compared with the similar algorithms, the proposed method improves the performance of low observable target detection and tracking significantly. Finally, a multi-target passive co-location method based on quasi-Monte Carlo simulated annealing maximum likelihood probability multi-hypothesis is proposed for multi-target detection and tracking when the number of targets is unknown. In this method, the number of targets is determined by the principle of multiple hypotheses, the initial track is realized by quasi-Monte Carlo simulated annealing, and the track maintenance is realized by sliding window batch processing. Simulation results show that the proposed method can effectively solve the problem of multi-target detection and tracking.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN95
【参考文献】
相关期刊论文 前10条
1 赵勇胜;赵闯;赵拥军;;利用外辐射源的TDOA和FDOA目标定位算法[J];计算机工程与应用;2017年08期
2 朱颖童;董春曦;刘松杨;董阳阳;赵国庆;;存在观测站位置误差的转发式时差无源定位[J];航空学报;2016年02期
3 郭云飞;唐学大;骆吉安;邵根富;;一种基于QMC-APF的检测前跟踪算法[J];现代雷达;2015年02期
4 李程;王伟;施龙飞;王雪松;;基于多源信息融合的有源雷达组网方式序贯识别方法[J];电子与信息学报;2014年10期
5 Li Jing;Zhao Yongjun;Li Donghai;;Accurate single-observer passive coherent location estimation based on TDOA and DOA[J];Chinese Journal of Aeronautics;2014年04期
6 乔梁;;基于外辐射源的多目标CMKF跟踪算法研究[J];陕西科技大学学报(自然科学版);2014年01期
7 蒋峥峥;王丹丹;陈晓红;李一名;;改进的模拟退火算法在多目标跟踪中的应用研究[J];计算机与数字工程;2013年11期
8 袁述;袁东辉;孙基洲;刘永波;李晶;原琳;;蚁群-遗传算法在多传感器多目标跟踪技术中的应用[J];电子学报;2013年03期
9 杨勇;;基于IEKF的目标、外辐射源联合跟踪滤波[J];现代雷达;2013年02期
10 陈志敏;薄煜明;吴盘龙;刘正凡;;拟蒙特卡罗粒子滤波改进算法及其在雷达目标跟踪中的应用[J];应用科学学报;2012年06期
相关博士学位论文 前5条
1 黄大羽;复杂环境下弱目标检测与跟踪算法研究[D];华东理工大学;2012年
2 李红伟;外辐射源雷达目标定位与跟踪方法研究[D];西安电子科技大学;2012年
3 唐续;外辐射源雷达目标跟踪技术研究[D];电子科技大学;2011年
4 杨进佩;基于GPS的无源雷达技术研究[D];南京理工大学;2006年
5 赵洪立;基于调频广播的无源雷达系统中微弱目标检测技术的研究[D];西安电子科技大学;2006年
相关硕士学位论文 前4条
1 王顺良;外辐射源无源定位与跟踪研究[D];南京理工大学;2012年
2 林茂;无源声探测网批处理目标跟踪算法[D];杭州电子科技大学;2010年
3 吴翼虎;外辐射源雷达目标检测与定位技术[D];西安电子科技大学;2010年
4 李蕾;盲源分离的极大似然估计算法研究与应用[D];哈尔滨工业大学;2009年
,本文编号:2213838
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2213838.html