基于压缩感知的电力信号压缩与重构研究
发布时间:2018-09-03 11:01
【摘要】:针对电力信号的采集和压缩问题,提出采用压缩感知理论对电力信号进行压缩采样和重构的方法,避免了传统的冗余采样。首先对采用压缩感知理论进行电能信号压缩采样的可行性进行了分析,并讨论了几种典型的压缩感知重构算法的具体实现方法和特性;然后采用这些算法,对一维稀疏信号和傅里叶变换基下稀疏的含有谐波和间谐波的电力信号进行重构实验。仿真结果表明,贪婪类压缩感知重构算法计算复杂度低、速度快,更适合一维电力信号的重构,其中SAMP算法可以在稀疏度未知的情况下,使用更少的采样值精确重构原始信号。
[Abstract]:Aiming at the problem of power signal acquisition and compression, a compression sensing theory is proposed to compress and reconstruct the power signal, which avoids the traditional redundant sampling. Firstly, the feasibility of compressed sensing theory for power signal compression sampling is analyzed, and the specific implementation methods and characteristics of several typical compression sensing reconstruction algorithms are discussed, and then these algorithms are adopted. In this paper, the sparse power signals with harmonics and interharmonics under one dimensional sparse signal and Fourier transform basis are reconstructed. The simulation results show that the greedy compression perceptual reconstruction algorithm has the advantages of low computational complexity and high speed, and it is more suitable for the reconstruction of one-dimensional power signals. The SAMP algorithm can accurately reconstruct the original signals with fewer sampling values when the sparsity is unknown.
【作者单位】: 东北石油大学秦皇岛分校;燕山大学电气工程学院河北省测试计量技术及仪器重点实验室;
【基金】:秦皇岛市科技支撑计划项目(201302A042)
【分类号】:TM711;TN911.7
[Abstract]:Aiming at the problem of power signal acquisition and compression, a compression sensing theory is proposed to compress and reconstruct the power signal, which avoids the traditional redundant sampling. Firstly, the feasibility of compressed sensing theory for power signal compression sampling is analyzed, and the specific implementation methods and characteristics of several typical compression sensing reconstruction algorithms are discussed, and then these algorithms are adopted. In this paper, the sparse power signals with harmonics and interharmonics under one dimensional sparse signal and Fourier transform basis are reconstructed. The simulation results show that the greedy compression perceptual reconstruction algorithm has the advantages of low computational complexity and high speed, and it is more suitable for the reconstruction of one-dimensional power signals. The SAMP algorithm can accurately reconstruct the original signals with fewer sampling values when the sparsity is unknown.
【作者单位】: 东北石油大学秦皇岛分校;燕山大学电气工程学院河北省测试计量技术及仪器重点实验室;
【基金】:秦皇岛市科技支撑计划项目(201302A042)
【分类号】:TM711;TN911.7
【参考文献】
相关期刊论文 前6条
1 张明;李开成;胡益胜;;基于JPEG2000的电能质量扰动数据压缩方法[J];电工技术学报;2011年10期
2 管春;周雒维;卢伟国;刘奇;;基于图像平滑算法的电能质量数据压缩方法[J];电力自动化设备;2011年08期
3 焦李成;杨淑媛;刘芳;侯彪;;压缩感知回顾与展望[J];电子学报;2011年07期
4 郑伟彦;吴为麟;;基于混合小波包的电能质量数据压缩算法[J];电工电能新技术;2010年03期
5 鲍文;周瑞;刘金福;;基于二维提升小波的火电厂周期性数据压缩算法[J];中国电机工程学报;2007年29期
6 周厚奎;;基于小波和神经网络的电能质量扰动信号数据压缩[J];电力自动化设备;2007年03期
【共引文献】
相关期刊论文 前10条
1 刘春燕;王建军;王文东;王尧;;基于非凸极小化的扰动压缩数据分离[J];电子学报;2017年01期
2 王强;张培林;王怀光;杨望灿;陈彦龙;;压缩感知中测量矩阵构造综述[J];计算机应用;2017年01期
3 陈雷;郑德忠;王忠东;;基于压缩感知的电力信号压缩与重构研究[J];电测与仪表;2017年01期
4 林思铭;彭卫东;林志国;李瑞;;改进的卡尔曼滤波压缩感知信道估计算法[J];探测与控制学报;2016年06期
5 张晓东;董唯光;郭俊锋;汤e,
本文编号:2219793
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2219793.html