当前位置:主页 > 科技论文 > 信息工程论文 >

基于Cortex-A9的嵌入式Web视频监控系统设计

发布时间:2018-09-07 17:15
【摘要】:随着社会的发展,人们生活水平不断提高的同时对安全防范的要求也越来越高,传统视频监控系统结构因为其系统的复杂性及对突发状况处理的不及时,已经不能满足当今对实时监控系统的要求。同时伴随着嵌入式技术与互联网技术的飞速发展,视频监控系统也进入了一个新的阶段,基于Web和嵌入式技术的视频监控也将成为未来监控系统的重要发展方向。论文首先对国内外视频监控系统的发展现状与趋势进行分析,以实际应用作为出发点,设计了一款基于B/S(Browser/Server)架构,以ARM嵌入式微处理器为主的远程视频监控系统。本文首先对视频监控进行需求分析,然后对视频传输过程中使用的视频压缩编码进行了研究,系统采用了H.264编码作为视频流的传输格式,接下来对系统的整体架构进行设计。在搭建系统硬件平台时,选用了基于ARM-Cortex A9架构的Exynos-4412微处理器作为核心控制芯片,同时选择了USB摄像头、DM9000网卡、串口等外围设备共同组成系统的硬件部分。基于上述硬件平台,接下来对系统软件进行设计,这一部分包括建立嵌入式开发环境和应用软件的开发。在构建嵌入式开发环境时,首先在宿主机安装基于Ubuntu的Linux操作环境,搭建交叉编译环境,然后针对嵌入式平台进行U-boot移植、Linux内核的裁剪与移植、根文件系统移植等工作,完成了嵌入式系统软件环境。在应用软件开发方面,将其分成了以下几个模块,首先视频采集模块利用Linux内核提供的V4L2框架进行视频数据的采集,然后对采集到的数据通过ARM平台自带的MFC功能进行H.264压缩编码;接下来视频传输模块实现了基于RTP/RTCP实时传输协议的传输功能;最后通过搭建BOA嵌入式Web服务器,实现系统的B/S架构。之后完成客户端程序的编写,使得用户可以通过Web浏览器进行登录查看实时监控内容。为了实现监控的智能化,本课题增加了运动检测功能,通过对运动检测相关算法的分析,最终选用了混合高斯模型的进行背景建模,并利用OpenCV这一开源计算机视觉库实现了运动物体的检测功能。当系统在监控画面中检测到有运动物体时,会触发系统的报警机制,此时系统会向用户发送包含图片附件的异常提醒邮件。最后,对本系统进行了实际运行测试,可以通过浏览器查看监控视频,结果表明这一套系统显示比较流畅,能达到实时性的要求,同时能够对简单环境下的运动目标进行检测,基本达到了预期的目标。通过本课题设计的嵌入式Web视频监控系统,在一定程度降低了系统的复杂度,节约了开发成本,并且具有一定的实用价值。
[Abstract]:With the development of society, people's standard of living is improving and the requirement of security is higher and higher. Because of the complexity of the system and the untimely handling of the sudden situation, the traditional video surveillance system structure is becoming more and more important. It can not meet the requirements of the real-time monitoring system. At the same time, with the rapid development of embedded technology and Internet technology, video surveillance system has entered a new stage. Video surveillance based on Web and embedded technology will become an important direction of future monitoring system. Firstly, this paper analyzes the development status and trend of video surveillance system at home and abroad, and designs a remote video surveillance system based on B / S (Browser/Server) architecture and ARM embedded microprocessor. In this paper, the requirements of video surveillance are analyzed, and then the video compression coding used in video transmission is studied. The system adopts H.264 coding as the transmission format of video stream, and then designs the overall architecture of the system. When setting up the hardware platform of the system, the Exynos-4412 microprocessor based on ARM-Cortex A9 architecture is selected as the core control chip, and the USB camera is chosen as the DM9000 network card, the serial port and other peripheral devices are selected together to constitute the hardware part of the system. Based on the above hardware platform, the system software is designed, which includes the establishment of embedded development environment and the development of application software. When building the embedded development environment, we first install the Linux operating environment based on Ubuntu on the host computer, build the cross-compiling environment, and then do some work such as cutting and transplanting the Linux kernel, transplanting the root file system and so on, aiming at the embedded platform. The embedded system software environment is completed. In the application software development, it is divided into the following modules. Firstly, the video acquisition module uses the V4L2 framework provided by the Linux kernel to collect video data. Then the collected data is compressed and encoded by H.264 through the MFC function of the ARM platform. Then the video transmission module realizes the transmission function based on the RTP/RTCP real-time transport protocol. Finally, the embedded Web server of BOA is built. Implement the B / S architecture of the system. After the completion of the client program, users can login through the Web browser to view real-time monitoring content. In order to realize the intelligentization of monitoring, this subject adds the function of motion detection. By analyzing the related algorithms of motion detection, the background modeling of mixed Gao Si model is selected. Using OpenCV, an open source computer vision library, the detection function of moving objects is realized. When the system detects the moving object in the monitoring screen, it triggers the alarm mechanism of the system. In this case, the system will send the user an abnormal reminder email containing the image attachment. Finally, the actual running test of the system is carried out, and the monitoring video can be viewed through the browser. The result shows that the system can display smoothly and achieve the requirement of real-time, and can detect the moving target in simple environment. The expected goal was basically achieved. The embedded Web video surveillance system designed in this paper reduces the complexity of the system to a certain extent, saves the development cost, and has certain practical value.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN948.6

【参考文献】

相关期刊论文 前10条

1 冯阳;周龙;;动态Web技术在远程监控系统中的应用[J];软件导刊;2015年10期

2 朱世明;;视频监控管理平台现状及发展趋势分析[J];科技资讯;2015年06期

3 华春梦;刘冲;;基于S3C2440嵌入式平台的USB摄像头视频监控[J];电脑开发与应用;2015年01期

4 吕少君;周渊平;;基于Live555的实时流媒体传输系统[J];计算机系统应用;2015年01期

5 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期

6 熊英;;基于背景和帧间差分法的运动目标提取[J];计算机时代;2014年03期

7 杨素秋;;Nand Flash启动模式下的Uboot移植[J];软件导刊;2013年03期

8 李校林;刘海波;张杰;刘利权;;RTP/RTCP,RTSP在无线视频监控系统的设计与实现[J];电视技术;2011年19期

9 王亮亮;王黎;高晓蓉;王泽勇;;基于视频图像的运动目标检测算法研究[J];微计算机信息;2010年16期

10 郭卫华;;模拟视频监控系统之过去、现在和将来[J];中国安防;2008年Z1期

相关硕士学位论文 前10条

1 陈玮博;基于RTP的H.264视频传输系统的研究与实现[D];北方工业大学;2016年

2 钱刚;基于ARM9的嵌入式智能视频监控系统设计[D];安徽理工大学;2016年

3 刘佳;嵌入式Web远程视频监控系统设计与实现[D];西北师范大学;2016年

4 盛殿新;嵌入式视频监控系统的研究与实现[D];山东大学;2016年

5 汪东旭;面向实时智能监控的背景建模算法研究与系统设计[D];浙江大学;2016年

6 李京春;基于ARM9的嵌入式Web视频监控系统设计[D];西安电子科技大学;2015年

7 刘明健;基于嵌入式linux的视频监控系统设计[D];江西理工大学;2015年

8 刘宛;智能监控视频中的目标检测技术研究[D];北京邮电大学;2015年

9 程凡;基于ARM智能家居远程视频监控系统设计与实现[D];西安电子科技大学;2015年

10 石利芬;基于ARM系统的网络摄像机的设计和实现[D];北京交通大学;2014年



本文编号:2228902

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2228902.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户80ed8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com