当前位置:主页 > 科技论文 > 信息工程论文 >

基于分段信号相关累加的变速度多站联合直接定位方法

发布时间:2018-09-12 19:40
【摘要】:在低信噪比条件下,基于时延和多普勒频移的直接定位算法在解决宽带信号源定位时精度较差.针对此问题,提出了一种基于分段信号相关累加的变速度多站联合直接定位算法,并给出了其克拉美罗下界.该算法利用多个变速度的观测站对信号进行接收,然后将同一观测站接收的目标信号分割成多段不重叠的短时信号,采用最大似然估计器,联合各段信号的时延、多普勒频移信息对目标进行直接定位.算法充分利用了观测信号包含的定位信息,并利用观测站速度的变化增加了目标位置信息,解决了分段信号联合估计带来的定位模糊问题,使定位精度进一步提高,增加了算法的实用性.仿真实验表明,较之传统直接定位算法,本文算法定位精度更高,尤其在低信噪比条件下更能逼近克拉美罗界.
[Abstract]:Under the condition of low signal-to-noise ratio (SNR), the accuracy of direct localization algorithm based on delay and Doppler shift is poor in solving the problem of wideband signal source location. In order to solve this problem, a multi-station joint direct location algorithm with variable speed based on piecewise signal correlation accumulation is proposed, and the lower bound of Clemero is given. The algorithm uses multiple variable speed stations to receive the signal, then divides the target signal received by the same observation station into multi-segment non-overlapping short-time signals, and uses the maximum likelihood estimator to combine the time delay of each segment signal. Doppler frequency shift information is used to locate the target directly. The algorithm makes full use of the location information contained in the observation signal, and increases the target position information by using the variation of the velocity of the observation station, solves the problem of location ambiguity caused by the joint estimation of the segmented signals, and further improves the positioning accuracy. The practicability of the algorithm is increased. The simulation results show that the proposed algorithm is more accurate than the traditional direct localization algorithm, especially in the case of low signal-to-noise ratio (SNR).
【作者单位】: 解放军信息工程大学;解放军66159部队;
【基金】:国家高技术研究发展计划(批准号:2012AA01A502,2012AA01A505) 国家自然科学基金(批准号:61401513)资助的课题~~
【分类号】:TN911.7

【相似文献】

相关期刊论文 前2条

1 王帆;柯炜;;一种基于RBF神经网络辅助的直接定位新方法[J];南京师范大学学报(工程技术版);2011年02期

2 ;[J];;年期

相关会议论文 前1条

1 张笑微;姜挺;王鑫;张锐;张一;;无控制点条件下的SAR影像直接定位[A];第四届“测绘科学前沿技术论坛”论文精选[C];2012年



本文编号:2240030

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2240030.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5d209***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com