基于盲源信号分离的全双工通信自干扰消除研究
发布时间:2018-09-17 07:56
【摘要】:盲源信号分离(BSS)的课题在信号处理研究方面一直是一个热门话题,它在现实生活中具有非常重要的意义,同时,它对学者和专家来说也非常具有挑战性。盲源信号分离是在不知道传输信道和源信号的信息,仅仅知道输入信号的个别信息特征和接收观测到的混合信号的前提下,由混合信号分离得出源信号。盲源信号分离研究主要针对传感器的个数不少于源信号的个数(m≥n)的超定模型,常采用独立成分分析(ICA)算法,它具有非常明显的分离效果。但是由于现实情况比较复杂,超定条件在实际中很难满足,于是,人们开始研究欠定(mn)模型,由于欠定问题的提出相对较晚,对于它的研究有待不断深入。本文讨论了盲源信号分离的几种模型以及超定、正定和欠定的算法,并进行了仿真研究,得出了理想的效果。同时针对欠定问题,在原有稀疏分量分析的基础上,改进了原有算法,使欠定模型的分离效果更加完美,并且给出了估计信号和原有信号的数值分析对比,能给人更加直观的感受。第五代通信系统(5G)的主要技术是全双工通信,它可以在同时间同频率上实现收发无线数据,解决了频谱日渐紧张的问题,也大大增加了无线通信的容量。5G全双工通信系统的实现的难点之一在于数字域和模拟域对系统产生的自干扰信号的抵抗。针对全双工通信的自干扰问题,本文介绍了现在的几种解决此问题的方法,并且在此基础上将盲源信号分离算法应用到解决自干扰问题中,提出了快速独立成分分析算法的联合信道估计自干扰消除方案,将其中的自干扰信号进行了有效的分离。
[Abstract]:The subject of blind source signal separation (BSS) is always a hot topic in signal processing. It is of great significance in real life, and it is also very challenging for scholars and experts. Blind source signal separation is to separate the source signal from the mixed signal without knowing the information of the transmission channel and the source signal, but only knowing the individual information characteristics of the input signal and receiving the observed mixed signal. The study of blind source signal separation is mainly focused on the overdetermined model of sensor number (m 鈮,
本文编号:2245229
[Abstract]:The subject of blind source signal separation (BSS) is always a hot topic in signal processing. It is of great significance in real life, and it is also very challenging for scholars and experts. Blind source signal separation is to separate the source signal from the mixed signal without knowing the information of the transmission channel and the source signal, but only knowing the individual information characteristics of the input signal and receiving the observed mixed signal. The study of blind source signal separation is mainly focused on the overdetermined model of sensor number (m 鈮,
本文编号:2245229
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2245229.html