单载波频域均衡技术的研究
[Abstract]:Single carrier frequency domain equalization (Single Carrier Frequency Domain Equalization,SC-FDE) is a technique to resist inter-symbol crosstalk caused by multipath delay in frequency-selective fading channels. Compared with traditional single-carrier time-domain equalization technique, SC-FDE technology has lower computational complexity and is comparable to OFDM (Orthogonal Frequency Domain Modulation) technology because of frequency domain equalization, and SC-FDE technology has lower peak-to-average power compared with multicarrier OFDM technology because of single-carrier transmission. There is no need for expensive linear amplifiers, and the sensitivity to carrier frequency offset is much lower than that of OFDM technology, and the synchronization accuracy is low. Therefore, this technology is widely used in broadband systems, such as the air interface standard IEEE 802.16, the Mobile Broadband Wireless access IEEE802.20 working Group, and the uplink of 3GPP LTE. However, SC-FDE technology also has some shortcomings, its spectrum efficiency is not high, and can not use frequency diversity and so on. In addition, the traditional SC-FDE system can not make full use of multipath diversity in multipath channel, which makes the channel capacity decrease. To solve these problems, researchers proposed the combination of SC-FDE technology and multi-input multiple-output (Multiple-Input Multiple-Output,MIMO) system, and many studies have applied STBC (Space-Time Block Coding) and SFBC (Space-Frequency Block Coding) to SC-FDE system, so that SC-FDE system can obtain spatial diversity. Time diversity and frequency diversity gain. Because the transmitted signal of SC-FDE system is carried out in time domain, SFBC scheme can not be applied directly. In the SC-FDE transmit diversity scheme based on SFBC, it is necessary to transform the time domain signal to the frequency domain by using the Fourier transform (Discrete Fourier Transform,DFT (Discrete Fourier Transform,DFT), and then to design the SFBC using IDFT (Inverse Discrete Transform,IDFT) to transform the encoded signal into the time domain for transmission. This scheme involves multiple Fourier transforms, and its computational complexity is high. The discrete Hartley transform (Discrete Hartley Transform,DHT), which is similar to Fourier transform but with low computational complexity, can be applied to this scheme. In this paper, the technical background and development of SC-FDE are studied, and the fading channel of wireless communication system is analyzed. The SC-FDE system model is established and compared with the OFDM system model. In the SC-FDE system, the STBC and SFBC transmit diversity schemes based on DFT are studied, the theoretical analysis and derivation are carried out, and the simulation results are verified. In order to reduce the computational complexity of the traditional SC-FDE system based on DFT, a SFBC SC-FDE system based on DHT is proposed in this paper. Aiming at the problem that DHT can only modulate real signal and can not directly diagonalize the channel matrix as DFT, this paper gives a detailed description and analysis, and puts forward the corresponding solution. In this scheme, the real part and the imaginary part of the 2-D complex modulation signal are transformed into discrete Hartley transform, then combined, the signal is transformed from time domain to frequency domain, and the SFBC is designed, and the complex DHT modulation signal is realized. The channel matrix is diagonalized by using the complementary characteristic of DHT matrix, and the frequency domain equalization of single tap is realized. Finally, through analysis and simulation, it is proved that compared with the traditional single-carrier frequency-domain equalization system based on Fourier transform, the proposed algorithm can achieve better performance in the case of high SNR. And the complexity of the receiver is reduced by nearly half. In addition, because the forward transformation and inverse transform of discrete Hartley transform are the same transformation, the same hardware and program can be used to realize modulation and demodulation, which reduces the hardware cost of the system.
【学位授予单位】:大连工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN911.5
【相似文献】
相关期刊论文 前10条
1 唐杰敏;葛万成;;单载波频域均衡系统的研究[J];电脑知识与技术(学术交流);2007年20期
2 曹蕾;张欣;杨大成;;频域均衡联合干扰删除的频域实现方法[J];电子科技大学学报;2008年06期
3 施婷婷,周世东,姚彦;时变信道下频域均衡系统的干扰抑制[J];清华大学学报(自然科学版);2005年03期
4 黄震亚;管云峰;孙军;;无线信道中的单载波频域均衡技术研究[J];通信技术;2007年04期
5 许国平;何维;张欣;杨大成;;重叠剪切法频域均衡固有误差分析及其改进方法[J];电子与信息学报;2008年09期
6 郭瑜晖;孙海信;程恩;袁飞;蒯小燕;;水声系统单载波频域均衡方法比较[J];厦门大学学报(自然科学版);2012年05期
7 初宝喜;;单载波宽带无线系统的频域均衡[J];中国新通信;2008年06期
8 曹蕾;张欣;杨大成;;频域均衡联合基于能量排序的部分并行干扰删除检测算法[J];电子与信息学报;2008年06期
9 吴江,吴伟陵;未来无线通信中的单载波频域均衡技术[J];数据通信;2004年05期
10 白文岭;肖悦;李少谦;;一种低发射功率的单载波频域均衡结构[J];中国科学技术大学学报;2009年10期
相关会议论文 前9条
1 李妍;李胜祖;;单载波频域均衡对多载波频分复用的性能改进[A];中国航海学会通信导航专业委员会2005年学术年会论文集[C];2005年
2 吴楚怀;唐普英;林艳军;;一种线性频域均衡的改进方案[A];2008年中国高校通信类院系学术研讨会论文集(下册)[C];2009年
3 成佩茂;刘顺兰;包建荣;;单载波频域均衡中独特字类型选择性能分析[A];浙江省电子学会2011学术年会论文集[C];2011年
4 史锋旗;董彬虹;李少谦;;下一代移动通信中的单载波频域均衡技术[A];2008年中国西部青年通信学术会议论文集[C];2008年
5 姜烨;;单载波频域均衡技术的研究[A];第22届全国煤矿自动化与信息化学术会议暨第4届中国煤矿信息化与自动化高层论坛论文集[C];2012年
6 王武军;梁庆林;;单载波频域均衡误码性能理论分析[A];中国通信学会第六届学术年会论文集(上)[C];2009年
7 祁淑慧;岳殿武;;空时分组编码与单载波频域均衡技术[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(下册)[C];2007年
8 张国斌;朱琦;酆广增;;基于IEEE 802.16a标准的单载波频域均衡系统[A];2003’中国通信学会无线及移动通信委员会学术年会论文集[C];2003年
9 杨志;白文乐;刘泽民;;单载波频域均衡系统FDE-NP算法的改进[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(上册)[C];2007年
相关博士学位论文 前1条
1 杜鹏;新一代移动通信系统关键技术研究[D];东南大学;2005年
相关硕士学位论文 前10条
1 曾波;低轨卫星移动通信单载波频域均衡研究与实现[D];哈尔滨工业大学;2016年
2 丁宝祺;基于单载波频域均衡的水声协作检测技术研究[D];哈尔滨工业大学;2016年
3 彭佳琪;单载波频域均衡系统设计与实现[D];哈尔滨工业大学;2016年
4 侯天印;单载波频域均衡技术的研究[D];大连工业大学;2016年
5 江舟;单载波频域均衡系统中关键技术的研究与实现[D];同济大学;2007年
6 张晓辉;基于频域过采样的单载波频域均衡系统关键技术研究[D];郑州大学;2012年
7 刘小云;下一代移动通信系统的频域均衡研究[D];杭州电子科技大学;2010年
8 郭友波;单载波传输系统自适应频域均衡研究[D];西安电子科技大学;2005年
9 孙霖楠;短波数传中信号的软信息提取及频域均衡技术研究[D];西安电子科技大学;2014年
10 陈微微;基于频域均衡的协作通信时延消除方法研究[D];南京邮电大学;2012年
,本文编号:2251876
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2251876.html