改进LMD算法在管道泄漏中的应用研究
[Abstract]:In view of the difficulty of extracting leakage characteristic information and the low accuracy of leak location in the process of natural gas pipeline leakage detection, this paper applies the local mean decomposition (Local Mean Decomposition,LMD) algorithm to pipeline leakage detection to realize the decomposition of pipeline leakage signal. Feature extraction and leak location. Firstly, this paper introduces the theoretical algorithm of local mean decomposition, and applies it to signal decomposition. As an effective method to deal with non-stationary random signals, LMD has the adaptive property and completeness of signal decomposition. However, due to the influence of the algorithm itself, it is easy to produce modal aliasing. Aiming at the phenomenon of modal aliasing, the problem of modal aliasing in the process of LMD decomposition is suppressed by means of the total local mean decomposition algorithm (Ensemble Local Mean Decomposition,ELMD) and the auxiliary noise technique. Secondly, the useful information is often affected and interfered by various noises in the transmission process, which reduces or confuses the useful signals in the signal source. In order to enhance the useful signal suppress the noise interference and ensure that the extracted eigenvalue can represent the signal feature it is necessary to pre-process the original signal. In order to avoid the technical loophole in the wavelet decomposition process, a ELMD spectral kurtosis joint denoising algorithm based on wavelet packet is proposed. On the basis of the effective PF (Product Function) components decomposed by ELMD, the optimal parameters of spectral kurtosis and the energy distribution of wavelet packets are used to determine the reconstructed nodes of the signal, and the signal denoising of each PF component is completed. Each PF component after denoising can characterize the characteristics of the original signal at different scales. Thirdly, by analyzing the characteristics of pipeline signals, the time-frequency analysis theory is studied, and an adaptive optimal kernel (Adaptive Optimal Kernel,AOK spectral entropy parameter based on time-frequency domain is proposed to quantitatively describe the time-frequency characteristics of the signals. The corresponding AOK parameters are extracted from each PF component to determine whether there is leakage or not and the working conditions of the pipeline are preliminarily determined. It has a good degree of distinction and good recognition accuracy for the normal operation of the pipeline, pipeline leakage and pipe percussion. Finally, the pipeline leak detection algorithm based on ELMD multi-scale correlation is introduced. Through the fusion of the PF component obtained by ELMD decomposition and the cross-correlation algorithm, the delay difference of different characteristic scales is obtained, and the location of pipeline leakage is completed. The algorithm is more accurate than that obtained by correlation calculation using the original signal directly, and it is helpful to improve the location accuracy of pipeline leakage.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN911.7
【参考文献】
中国期刊全文数据库 前10条
1 田野;;基于次声波的输气管道泄漏监测系统[J];油气田地面工程;2016年10期
2 张晓威;刘锦昆;陈同彦;季文峰;冯新;;基于分布式光纤传感器的管道泄漏监测试验研究[J];水利与建筑工程学报;2016年03期
3 孙洁娣;肖启阳;温江涛;王飞;;改进LMD及高阶模糊度函数的管道泄漏定位[J];仪器仪表学报;2015年10期
4 孙洁娣;肖启阳;温江涛;王飞;;基于LMD包络谱熵及SVM的天然气管道微小泄漏孔径识别[J];机械工程学报;2014年20期
5 王保群;林燕红;焦中良;;我国天然气管道现状与发展方向[J];国际石油经济;2013年08期
6 孟令雅;付俊涛;李玉星;刘翠伟;刘光晓;;输气管道泄漏音波信号传播特性及预测模型[J];中国石油大学学报(自然科学版);2013年02期
7 刘小龙;王华;赵淑娥;陈建军;魏军;刘强;;自适应最优核时频分布在地震储层预测中的应用[J];中南大学学报(自然科学版);2012年08期
8 方亮;苏旭;赵晓龙;;天然气长输管道泄漏检测技术进展[J];化工装备技术;2012年03期
9 何存富;郑兴强;骆建伟;杭利军;吴斌;;消偏型Sagnac光纤管道泄漏检测系统及其稳定性研究[J];中国激光;2012年02期
10 范玉生;;小波和小波包变换在心电信号去噪中的应用[J];重庆科技学院学报(自然科学版);2010年01期
中国硕士学位论文全文数据库 前6条
1 张冉;城市管道燃气防泄漏监测技术研究[D];东华理工大学;2016年
2 胡月;基于负压波原理的输油管线泄漏监测技术研究[D];长春理工大学;2016年
3 薄瑞瑞;基于LMD的振动信号处理及故障特征提取研究[D];内蒙古大学;2015年
4 段乐峥;基于HHT的供水管道泄漏检测研究[D];厦门大学;2014年
5 刘盈;基于次声波的煤气管道泄漏监测系统研究[D];电子科技大学;2010年
6 王久龙;基于红外成像技术的埋地管道泄漏定位实验研究[D];大庆石油学院;2008年
,本文编号:2310549
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2310549.html