当前位置:主页 > 科技论文 > 信息工程论文 >

转子式陀螺挠性梁设计与分析

发布时间:2018-11-11 01:27
【摘要】:陀螺仪作为一种传统的惯性器件,在智能硬件兴起的今天,愈加得到各方的关注。本文对目前转子式陀螺提出了一种新型挠性梁转子式陀螺结构,旨在实现更好的性能,增大测量范围,提高陀螺精度。在该陀螺系统中,挠性梁为关键部件,直接决定了器件的最终性能。本文针对该转子式陀螺的挠性梁展开了结构设计仿真分析,提出应变检测的方法。由于开环对系统中误差因素控制能力弱,精度较低,后期加入压电闭环反馈环节,进一步改善挠性梁结构检测结果的线性度和灵敏度,提高了系统最终性能。本论文中通过对材料力学等相关理论研究,建立了微陀螺挠性梁变形检测力学模型,导出梁变形与系统性能表征之间的线性理论证明。而后通过solidworks软件进行了系统整体建模,在ansys workbench中针对挠性梁结构从材料,结构布置,截面等因素进行尺寸优化仿真,改进梁结构合理性设计方案。随后在ansys workbench环境中搭建了惠斯通电桥三维模型完成了挠性梁应变检测。对应变检测中误差进行仿真分析,优化了应变薄膜厚度尺寸,此外通过Mexwell软件研究了系统中磁场对挠性梁应变检测的影响误差。最后通过ansys参数优化对挠性梁压电执行中反馈效果进行仿真研究,改进了梁的压电反馈结构。通过仿真研究发现,挠性梁等截面尺寸厚度对梁变形检测灵敏相关性最大,在形变限度内,优化挠性梁厚度尺寸到0.2mm。变截面梁结构削减梁截面尺寸有效提高了应变值,在合理限度内优化了梁变形检测。应变检测采用全桥式检测有效补偿了硅应变片温度影响,提高检测灵敏度,优化压阻薄膜厚度为0.02mm。陀螺偏转中相较挠性梁应变检测,磁场中电磁阻矩自平衡影响占4.7%,加入应变检测修正系数1.05。闭环环节得到输入角速度与闭环压电反馈最佳矫正电压点性能指标,同时改进了挠性梁结构,嵌入应变薄膜优化厚度尺寸0.04mm,增大系统检测范围达±45°/s。最终新型挠性梁转子陀螺整体性能提升,非线性度为0.13%,闭环标度因子达到332.4mV/(°)?s~(-1)。
[Abstract]:Gyroscope as a traditional inertial device, in the rise of intelligent hardware today, more and more attention. In this paper, a new type of rotor gyroscope with flexible beam is proposed, which aims at achieving better performance, increasing measurement range and improving gyroscope precision. In the gyroscope system, the flexible beam is the key component, which directly determines the final performance of the device. In this paper, the structural design simulation analysis of the flexible beam of the rotor gyroscope is carried out, and the method of strain detection is proposed. Due to the weak control ability of open loop to the error factors and the low precision, the linearity and sensitivity of the test results of the flexible beam structure are further improved by adding piezoelectric closed-loop feedback link in the later stage, and the final performance of the system is improved. In this paper, a mechanical model of micro gyro flexible beam deformation detection is established by studying the theory of material mechanics, and the linear theoretical proof between beam deformation and system performance characterization is derived. Then the whole system is modeled by solidworks software, and the dimension optimization simulation of flexible beam structure is carried out in ansys workbench from the aspects of material, structure layout, section and so on, so as to improve the rationality design scheme of beam structure. Then the three-dimensional model of Wheatstone bridge is built in ansys workbench environment to measure the strain of flexible beam. The error of strain detection is simulated and the thickness of strain film is optimized. In addition, the effect of magnetic field on strain measurement of flexible beam is studied by Mexwell software. Finally, the feedback effect in the piezoelectric performance of flexible beam is simulated by optimizing the ansys parameters, and the piezoelectric feedback structure of the beam is improved. The results of simulation show that the thickness of the same section of the flexible beam has the most sensitive correlation to the deformation detection of the beam, and the thickness of the flexible beam is optimized to 0.2 mm within the deformation limit. The reduction of beam section size of variable section beam structure can effectively improve the strain value and optimize the beam deformation detection within reasonable limits. The effect of silicon strain gauge temperature is compensated effectively by full-bridge method, and the sensitivity is improved, and the thickness of piezoresistive film is optimized to be 0.02 mm. In gyroscope deflection, the influence of electromagnetic resistance moment self-balance in magnetic field is 4.7, and the correction coefficient of strain detection is 1.05. At the same time, the structure of flexible beam is improved, the optimum thickness of embedded strain film is 0.04mm, and the detection range of the system is increased to 卤45 掳/ s. Finally, the overall performance of the new flexible beam rotor gyroscope is improved, the nonlinearity is 0.13 and the closed-loop scaling factor reaches 332.4mV/ (掳)? s ~ (-1).
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN96

【参考文献】

相关期刊论文 前10条

1 沈易霏;韩邦成;郑世强;;非对称大惯量刚性磁悬浮高速转子陀螺效应自适应抑制方法研究[J];振动与冲击;2016年22期

2 李延宝;李结冻;孙宏丽;于常利;卢山;;磁悬浮力矩陀螺内外框架低速高精度控制技术研究[J];上海航天;2015年05期

3 赵阳;裘安萍;施芹;夏国明;赵健;;硅微陀螺仪零偏稳定性的优化[J];光学精密工程;2014年09期

4 李红光;;现代军用MEMS惯性传感器技术进展[J];传感器与微系统;2014年08期

5 许昕;何杰;王文;卜继军;;微机械陀螺仪的新进展及发展趋势[J];压电与声光;2014年04期

6 闵鹏;赵金城;;考虑剪切变形影响的短深钢梁跨中挠度计算[J];建筑科学;2013年03期

7 沈军;缪玲娟;吴军伟;郭子伟;;基于RBF神经网络的光纤陀螺启动补偿及应用[J];红外与激光工程;2013年01期

8 魏长征;周伟;李昕欣;;基于表面微机械技术的压阻式加速度传感器[J];仪表技术与传感器;2011年11期

9 刘凯;张卫平;陈文元;李凯;肖奇军;马高印;;基于科氏加速度的微陀螺[J];压电与声光;2010年03期

10 杜昌雷;张怀武;张晓涛;钟智勇;;一种新型薄片转子磁悬浮陀螺的结构设计与分析[J];磁性材料及器件;2010年02期

相关硕士学位论文 前1条

1 刘付强;基于MEMS器件的捷联姿态测量系统技术研究[D];哈尔滨工程大学;2007年



本文编号:2324111

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2324111.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e31d2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com