基于Duffing振子系统的微弱信号检测方法研究
[Abstract]:Weak signal is a useful signal with small amplitude, which is usually easily submerged by strong noise. Traditional weak signal detection methods are mainly based on filtering and suppressing noise, such as narrowband filtering, wavelet analysis, sampling integration, correlation detection, etc. These methods have high signal-to-noise ratio (SNR) detection threshold and damage useful signals to some extent. Therefore, the Duffing oscillator system is sensitive to the weak periodic signal and immune to any zero mean noise, so that the weak periodic signal can be detected effectively at low signal-to-noise ratio (SNR). In this paper, firstly, the dynamic characteristics of Duffing oscillator system and the influence of noise on the system state are analyzed. Secondly, the method of judging the threshold value of the system is analyzed. The system threshold is determined based on time domain and phase locus method, and the precise threshold is calculated according to Lyapunov exponent. Based on the variable step size Duffing oscillator detection system, a set of simulation step sequences which can cover the frequency band of the signal to be tested are set. The low signal-to-noise ratio (SNR) weak signal frequency search and detection is realized. The amplitude of the measured signal is detected by the method of phase trajectory observation. By studying the relationship between the maximum Lyapunov exponent of the system and the amplitude of the total driving force of the signal to be measured, and combining the relationship between the amplitude of the excitation force and the phase, the effective detection of the initial phase of the measured signal is accomplished. Finally, the parameter estimation of the frequency, amplitude and phase of the measured signal is completed, and the simulation experiments are carried out using matlab to verify the validity and accuracy of the method.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN911.23
【参考文献】
相关期刊论文 前10条
1 李楠;李秀坤;刘彩虹;;对称Alpha稳定分布噪声下的Duffing振子检测方法[J];船舶力学;2017年01期
2 李国正;张波;;基于Duffing振子检测频率未知微弱信号的新方法[J];仪器仪表学报;2017年01期
3 赖志慧;饶锡新;刘建胜;冷永刚;;基于Duffing振子的信号频谱重构随机共振研究[J];振动与冲击;2016年21期
4 燕并男;刘崇新;倪骏康;赵亮;;Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system[J];Chinese Physics B;2016年10期
5 李楠;李秀坤;刘彩红;;变幅值系数的短时Duffing振子阵列检测方法[J];哈尔滨工程大学学报;2016年12期
6 武晓春;张海东;何永祥;;基于改进型Duffing振子的ZPW-2000移频信号检测[J];铁道工程学报;2016年09期
7 张悦;刘尚合;胡小锋;樊高辉;;微弱瞬态电磁辐射信号的双耦合Duffing振子自适应检测方法[J];高电压技术;2016年06期
8 王慧武;丛超;;一种基于Duffing系统的信号检测与参数估计新方法[J];电子学报;2016年06期
9 温少芳;申永军;杨绍普;;分数阶时滞反馈对Duffing振子动力学特性的影响[J];物理学报;2016年09期
10 张菁;王斌;叶家敏;;二分法快速求解Duffing混沌阈值的微弱信号检测[J];实验室研究与探索;2016年02期
相关博士学位论文 前2条
1 赖志慧;基于Duffing振子混沌和随机共振特性的微弱信号检测方法研究[D];天津大学;2014年
2 乐波;基于混沌振子与小波的低信噪比信号检测研究与应用[D];电子科技大学;2009年
相关硕士学位论文 前1条
1 李继永;基于混沌振子的微弱信号检测技术研究[D];电子科技大学;2010年
,本文编号:2378757
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2378757.html